MATLAB® 7

External Interfaces

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB® External Interfaces
© COPYRIGHT 1984-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

December 1996
July 1997
January 1998
October 1998
November 2000
June 2001

July 2002
January 2003
June 2004
October 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Online only
Second printing
Third printing
Fourth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 5 (release 8)

Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)
Revised and renamed for MATLAB 6.0 (Release 12)
Revised for MATLAB 6.1 (Release 12.1)
Revised for MATLAB 6.5 (Release 13)
Revised for MATLAB 6.5.1 (Release 13SP1)
Revised for MATLAB 7.0 (Release 14)
Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.4 (Release 2007a)
Revised for MATLAB 7.5 (Release 2007b)
Revised for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)

Importing and Exporting MAT-Files from C/C++
and Fortran Programs

1

Using MAT-Files00 .. 1-2
Introduction i i 1-2
Importing Data into the MATLAB Workspace 1-2
Exporting Data from the MATLAB Workspace 1-3
Exchanging Data Files Between Platforms 1-4
Reading and Writing MAT-Files 1-5
Writing Character Data 1-7
Finding Associated Files 1-8

Examples of MAT-Files 1-11
Listof Examples 1-11
Creating a MAT-Filein C i, 1-11
Creating a MAT-Filein C++ 1-12
Reading a MAT-Filein C/C++ 1-12
Creating a MAT-File in Fortran 1-13
Reading a MAT-File in Fortran 1-14

Compiling and Linking MAT-File Programs 1-15

Compiling and Linking on UNIX Operating Systems 1-15
Compiling and Linking on Windows Operating Systems .. 1-17
Required Files from Third-Party Sources 1-17
Working Directly with Unicode Encoding 1-19

MATLAB Interface to Shared Libraries

2|

Calling Functions in Shared Libraries 2-2
What Is a Shared Library?, 2-2
Loading the Library 2-3

Unloading the Library 2-4

Viewing Library Functions 2-4

Invoking Library Functions 2-7
Limitations to Shared Library Support 2-8
Passing Arguments to Shared Library Functions 2-12
C and MATLAB Equivalent Types 2-12
Passing Arguments 2-14
Examples of Passing Data to Shared Libraries 2-15
Passing Pointers00, 2-21
Passing a NULL Pointer 2-22
Manually Converting Data Passed to Functions 2-22
Working with Pointers 2-23
The libpointer Objectccu it nnnn. 2-23
Constructing a libpointer Object 2-24
Creating a Pointer to a Primitive Type 2-24
Creating a Pointer to a Structure 2-28
Passing a Pointer to the First Element of an Array 2-30
Putting a String into a Void Pointer 2-30
Passing an Array of Strings, 2-31
Memory Allocation for an External Library 2-33
Multilevel Pointers, 2-34
Working with Structures 2-37
Structure Argument Requirements 2-37
Working with Structures Examples 2-37
Finding Structure Field Names 2-38
Example of Passing a MATLAB Structure 2-39
Passing a libstruct Object 2-39
Using the Structure asan Object 2-42

Calling C/C++ and Fortran Programs from
MATLAB Command Line

3

Introducing MEX-Files 3-2
What Are MEX-Files?c0 i, 3-2
Definition of MEX i i 3-3
MEX and MX Matrix Libraries 3-3

vi Contents

Introduction to Source MEX-Files 3-3
Overview of Creating a Binary MEX-File 3-4
Configuring Your Environment 3-4

Using MEX-Files to Call C/C++ and Fortran

Programs 3-5
Creating a Source MEX-File 3-5
Workflow of a MEX-File, 3-10
Using Binary MEX-Files, 3-15
Binary MEX-File Placement 3-16
Using Help Files with MEX-Files 3-16
Workspace for MEX-File Functions 3-17
MATLABData0t 3-18
The MATLAB Arrayouiiiiiiinnnnnnn. 3-18
Data Storage 3-18
MATLABTYpes . .oviiii e 3-19
Sparse Matricesuiiiiiii e 3-21
Using DataTypes ...ttt 3-21
Building MEX-Files0iiiiiiieinn... 3-23
What You Need to Build MEX-Files 3-23
Selecting a Compiler on Windows Platforms 3-23
Selecting a Compiler on UNIX Platforms 3-29
Linking Multiple Files i .. 3-32
Overview of Building the timestwo MEX-File 3-33
Troubleshooting MEX-Files 3-35
Technical Supportcciiiiiiiinnnn. 3-35
Configuration Issuesciiiiiinnnnennnn.. 3-35
Understanding MEX-File Problems 3-38
Compiler and Platform-Specific Issues 3-42
Memory Management Issues 3-43
Custom Building MEX-Files 3-49
Who Should Read This Chapter 3-49
MEX Script Switches, 3-49
Custom Building on UNIX Systems 3-53
Custom Building on Windows Systems 3-58

vii

viii

Calling LAPACK and BLAS Functions from

MEX-Files e e 3-65
What You Needto Know 3-65
Creating a MEX-File Using LAPACK and BLAS

Functions it 3-66
Preserving Input Values from Modification 3-68
Passing Arguments to Fortran Functions from C/C++

Programs 3-69
Passing Arguments to Fortran Functions from Fortran

Programs 3-70
Handling Complex Numbers in LAPACK and BLAS

Functionst 3-71
Modifying the Function Name on UNIX Systems 3-74

Running MEX-Files with .DLL File Extensions on

Windows 32-bit Platforms 3-75
Upgrading MEX-Files to Use 64-Bit API 3-76
MATLAB Support for 64-Bit Indexing 3-76
What Happens in the Next Release? 3-77
What If I Don’t Upgrade?cciiiiiian... 3-78
How to Upgrade MEX-Files to Use the 64-Bit APT 3-80

Creating C/C++ Language MEX-Files

4 |

C/C++ Source MEX-Files 4-2
The Components of a C/C++ MEX-File 4-2
Gateway Routine 4-2
Computational Routine 4-5
Preprocessor Macroscouuiiiiiiiinnnnnn. 4-5
Data Flowin MEX-Files 4-5
Creating C++ MEX-Files, 4-9

Examples of C/C++ Source MEX-Files 4-11
Introduction to C/C++ Examples 4-11
Passinga Scalar 4-12
Passing Strings 4-13
Passing Two or More Inputs or Outputs 4-14

Contents

Passing Structures and Cell Arrays 4-15

Filling an mXATrrayc.oviiieetnnnnninne.. 4-17
Prompting User for Input 4-17
Handling ComplexData 4-18
Handling 8-, 16-, and 32-Bit Data 4-19
Manipulating Multidimensional Numerical Arrays 4-20
Handling Sparse Arraysc.coiiiiiineeneennnnn. 4-21
Calling Functions from C/C++ MEX-Files 4-22
Using C++ Features in MEX-Files 4-23
File Handling with C++ 4-24
Debugging C/C++ Language MEX-Files 4-26
Notes on Debuggingc .. 4-26
Debugging on the Microsoft Windows Platforms 4-26
Debugging on Linux Platforms 4-34
Handling Large mxArraysccovuiuuuee... 4-37
Usingthe 64-Bit APT i, 4-37
Building the Binary MEX-File 4-39
Example 4-39
Caution Using Negative Values 4-40
Building Cross-Platform Applications 4-40
Memory Managementcc0iiiuuee... 4-41
Automatic Cleanup of Temporary Arrays 4-41
Persistent Arrays 4-42
Hybrid Arraysoiiiii i 4-43
Large File /O i, 4-45
Prerequisites to Using 64-Bit /O 4-45
Specifying Constant Literal Values 4-47
OpeningaFile i, 4-48
Printing Formatted Messages 4-49
Replacing fseek and ftell with 64-Bit Functions 4-49
Determining the Size of an Open File 4-50
Determining the Size of a Closed File 4-51

ix

X

Contents

Creating Fortran MEX-Files

5

Fortran Source MEX-Files 5-2
The Components of a Fortran MEX-File 5-2
Gateway Routine 5-2
Computational Routine 5-5
Preprocessor Macroscouiiiiiiiiiiiinnnn. 5-5
Using the Fortran %val Construct 5-6
Data Flow in MEX-Files 5-7

Examples of Fortran Source MEX-Files 5-12
Introduction to Fortran Examples 5-12
Passinga Scalar i 5-13
Passing Strings e e 5-13
Passing Arrays of Strings 5-14
Passing Matricesiiiiiiiiiiiiiiiii. 5-15
Passing Integers i 5-16
Passing Two or More Inputs or Outputs 5-16
Handling ComplexDataccuievn... 5-17
Dynamically Allocating Memory 5-18
Handling Sparse Matricesccoiiuiuu.... 5-19
Calling Functions from Fortran MEX-Files 5-20

Debugging Fortran Source MEX-Files 5-22
Notes on Debugging i, 5-22
Debugging on Microsoft Windows Platforms 5-22
Debugging on Linux Platforms 5-22

Handling Large mxArrayscccoiuu.... 5-26
Usingthe 64-Bit API 5-26
Building the Binary MEX-File 5-28
Caution Using Negative Values 5-28
Building Cross-Platform Applications 5-28

Memory Managementcc..... 5-29

Calling MATLAB Software from C and Fortran

Programs

6

Using the MATLAB Engine to Call MATLAB Software

from C/C++ and Fortran Programs 6-2
Introduction to MATLAB Engine 6-2
The Engine Libraryc0 i, 6-3
GUI-Intensive Applicationscouuuieeeeo... 6-4
Examples of Calling Engine Functions 6-5
L0 =) T 1= 6-5
Calling MATLAB Software from a C Application 6-5
Calling MATLAB Software from a C++ Application 6-7
Calling MATLAB Software from a Fortran Application ... 6-7
Attaching to an Existing MATLAB Session 6-8
Compiling and Linking MATLAB Engine Programs ... 6-10
Write Your Applicationcciiiiiinnn... 6-10
Check Required Libraries and Files 6-10
Build the Application, 6-13
Set Run-Time Library Path 6-14
Select MATLAB Versionc.couiiiiinninnnn... 6-16
Register MATLAB Software as a COM Server 6-16
Testthe Program 6-16
Example — Building an Engine Application on Windows
51 7=Y ¢ o 6-17
Example — Building an Engine Application on UNIX
51 =Y 0 o = 6-17

Using Sun Java Classes in MATLAB Software

7

Product Overviewttt 7-2
Sun Java Interface Is Integral to MATLAB Software 7-2
Benefits of the MATLAB Java Interface 7-2
Who Should Use the MATLAB Java Interface 7-2
To Learn More About Java Programming Language 7-3

xi

xii

Contents

Platform Support for JVM Software
Using a Different Version of JVM Software

Bringing Java Classes and Methods into MATLAB
Workspacec it
Introduction i i
Sources of Java Classescciiiiiiinnne...
Defining New Java Classes
ThedavaClassPath
Making Java Classes Available in MATLAB Workspace ..
Loading Java Class Definitions
Simplifying Java Class Names
Locating Native Method Libraries
Java Classes Containedina JARFile

Creating and Using Java Objects
L0 =) T 1=
Constructing Java Objects,
Concatenating Java Objects,
Saving and Loading Java Objects to MAT-Files
Finding the Public Data Fields of an Object
Accessing Private and PublicData
Determining the Class of an Object

Invoking Methods on Java Objects
Using Java and MATLAB Calling Syntax
Invoking Static Methods on Java Classes
Obtaining Information About Methods
Java Methods That Affect MATLAB Commands
How MATLAB Software Handles Undefined Methods
How MATLAB Software Handles Java Exceptions
Method Execution in MATLAB Software

Working with Java Arrays
Introduction i
How MATLAB Software Represents the Java Array
Creating an Array of Objects in MATLAB Software
Accessing Elements of a Java Array
Assigningtoadava Array
Concatenating Java Arraysc.coiiiiiieeenn..
Creating a New Array Reference
Creating a CopyofadavaArray

7-3
7-4

Passing Data to a Java Method
Introduction i
Conversion of MATLAB Argument Data
Passing Built-In Types
Passing String Arguments,
Passing Java Objects
Other Data Conversion Topicscovuveeeeno...
Passing Data to Overloaded Methods

Handling Data Returned from a Java Method
Introduction i i
Conversion of Java Return Types
Built-In Types ...t e e
dJava Objects ...t
Converting Objects to MATLAB Types

Introduction to Programming Examples

Example — Readinga URL
L0 =) T 1=
Description of URLdemo
Running the Example

Example — Finding an Internet Protocol Address
OV VIEW &ttt ettt ettt e e e e e
Description of resolvelpc.cvviiiinnn..
Running the Example

Example — Creating and Using a Phone Book
L0 =) T 1=
Description of Function phonebook
Description of Function pb_lookup
Description of Function pb_add
Description of Function pb_remove
Description of Function pb_change
Description of Function pb_listall
Description of Function pb_display
Description of Function pb_keyfilter
Running the phonebook Program

xiii

xiv

Contents

MATLAB Interface to .NET Framework

8

Using .NET from MATLAB: An Overview 8-2
What Is the Microsoft .NET Framework? 8-2
Benefits of the MATLAB .NET Interface 8-2
Why Use the MATLAB .NET Interface? 8-2
Limitations to NET Support 8-3
What’s the Difference Between the MATLAB .NET

Interface and MATLAB® Builder NE? 8-4
Requirements i 8-4
Using a .NET assembly in MATLAB 8-5
To Learn More About the .NET Framework 8-5

Getting Started with NET 8-6
What Is an Assembly?, 8-6
NET Terminology ...t i ittt eiiiiee e 8-7
Example — Using System Resources 8-8
Simplifying .NET Class Names 8-14
Loading .NET Assemblies into MATLAB 8-14
Handling Exceptions, 8-15

Using a .NET Object i, 8-16
Creating a NET Object, 8-16
Using netdoc.NetSample 8-16
NET Properties in the MATLAB Workspace 8-18
NET Methods in the MATLAB Workspace 8-24
NET Events in the MATLAB Workspace 8-34
What Classes Are in a .NET Assembly? 8-35
Using the delete Function on a .NET Object 8-36

Handling .NET Data in MATLAB Software 8-37
Passing Data toa .NET Object 8-37
Handling Data Returned from a .NET Object 8-43

Using Arrays with .NET Applications 8-45
NET Arrays oo et 8-45
Creating .NET Arrays in MATLAB 8-45
Example — Passing Data To a .NET Assembly 8-47
Using .NET Arrays in MATLAB 8-48
Accessing .NET Array Elements in MATLAB 8-50
Example — Reading Data From a .NET Assembly 8-52

Limitations to Support of NET Arrays 8-55

Using GenericClasses, 8-56
L0 =) T 1= 8-56
Accessing Items in a Collection 8-56
Example — Creating a Collection 8-57
Example — Converting a Collection to a MATLAB

AXTay . e 8-59
Calling Generic Methods 8-60

Troubleshooting Security Policy Settings From a
Network Drive i, 8-65

COM Support for MATLAB Software

9

Introducing MATLAB COM Integration 9-2
What Is COM? e e e 9-2
Concepts and Terminologycciiiiiueeeeen... 9-2
The MATLAB COM Clientccuiiiiinnenn. 9-5
The MATLAB COM Automation Server 9-6
Registering Controls and Servers 9-6

Getting Started with COM 9-8
Introduction i 9-8
Basic COM Functionsciiiiiiiininne... 9-8
Overview of MATLAB COM Client Examples 9-10
Example — Using Internet Explorer Program in a MATLAB

Figure 9-11
Example — Grid ActiveX Control in a Figure 9-16
Example — Reading Excel Spreadsheet Data 9-24

Supported Client/Server Configurations 9-32
Introduction i 9-32
MATLAB Client and In-Process Server 9-32
MATLAB Client and Out-of-Process Server 9-33
COM Implementations Supported by MATLAB

Softwaret e e e 9-34

Client Application and MATLAB Automation Server 9-34

XV

Client Application and MATLAB Engine Server 9-36

MATLAB COM Client Support

10|

Creating COM Objectsciiiiiinnnnennnnn. 10-2
Creating the Server Process — An Overview 10-2
Creating an ActiveX Control 10-3
Creating a COM Serverc.iiiiinuneennnnn. 10-9

Exploring Your Object 10-12
About Your Objectc i, 10-12
Exploring Properties, 10-12
Exploring Methods 10-14
Exploring Events 10-17
Exploring Interfaces, 10-18
Identifying Objects and Interfaces 10-19

Using Object Properties 10-22
About Object Properties, 10-22
Working with Properties 10-23
Setting the Value of a Property 10-26
Working with Multiple Objects 10-28
Using Enumerated Values for Properties 10-29
Using the Property Inspector 10-32
Custom Properties 10-34
Properties That Take Arguments 10-35

Using Methods i iiiinnn. 10-39
About Methods i, 10-39
Getting Method Information 10-40
Invoking Methods on an Object 10-44
Exceptions to Using Implicit Syntax 10-46
Specifying Enumerated Parameters 10-48
Optional Input Argumentsccouviieeeo.... 10-49
Returning Multiple Output Arguments 10-50
Argument Callouts in Error Messages 10-50

Using Events00, 10-52

xvi Contents

About Events e
Functions for Working with Events
Examples of Event Handlers
Responding to Events — an Overview
Responding to Events — Examples
Writing Event Handlers
Sample Event Handlers
Writing Event Handlers as MATLAB File Subfunctions ..

Getting Interfaces to the Object
IUnknown and IDispatch Interfaces
Custom Interfacesciiiiiinnnnnennnnn.

Saving YourWork
Functions for Saving and Restoring COM Objects
Releasing COM Interfaces and Objects

Handling COM Data in MATLAB Software
Passing Datatoa COM Object
Handling Data from a COM Object
Unsupported Typescoviiiiini i iiiiiinnn
Passing MATLAB Data to ActiveX Objects
Passing MATLAB SAFEARRAY to COM Object
Reading SAFEARRAY from a COM Object in MATLAB

Applications
Displaying MATLAB Syntax for COM Objects

Examples of MATLAB Software as an Automation
Clientt e e e
MATLAB Sample Control,
Using a MATLAB Application as an Automation Client
Connecting to an Existing Excel Application

Running a Macro in an Excel Server Application
MATLAB COM Client Demo cccuuu...

Advanced Topics,
Deploying ActiveX Controls Requiring Run-Time
Licenses ..o e
Using Microsoft Forms 2.0 Controls
Using COM Collectionsovvveneeeeeeenennnnnnnnn.
Using MATLAB Application as a DCOM Client
MATLAB COM Support Limitations

10-85
10-85

. 10-85

10-87
10-88
10-89

10-90

10-90
10-91
10-92
10-93
10-93

xXvii

xviii

11

Contents

MATLAB COM Automation Server Support

Introduction 11-2
What Is Automation?, 11-2
Creating the MATLAB Server, 11-2
Connecting to an Existing MATLAB Server 11-5

MATLAB Automation Server Functions and

Properties 11-7
Introduction 11-7
Executing Commands in the MATLAB Server 11-7
Exchanging Data with the Server 11-9
Controlling the Server Window 11-10
Terminating the Server Process 11-11
Client-Specific Information 11-11
Using the Visible Property 11-12
Additional Automation Server Information 11-13

Launching MATLAB as an Automation Server in Desktop

Mode e 11-13
Creating the Server Manually 11-13
Specifying a Shared or Dedicated Server 11-14
Using Date Data Type ..., 11-15
Using MATLAB Application as a DCOM Server 11-15

Examples of a MATLAB Automation Server 11-16

Example — Running MATLAB Function from Visual Basic

NET Program0 iiiiiiiiannnnn. 11-16
Example — Viewing Methods from a Visual Basic .NET

Client ...t e e 11-17
Example — Calling MATLAB Software from a Web

Application 11-17

Example — Calling MATLAB Software from a C# Client .. 11-20

Using Web Services with MATLAB

12

How You Can Use Web Services with MATLAB 12-2
What Are Web Services in MATLAB? 12-2
What You Need to Use Web Services with MATLAB 12-3
Typical Applications Using Web Services with MATLAB .. 12-4

Ways of Using Web Services in MATLAB 12-6
Two Basic Ways to Access Web Services from MATLAB .. 12-6
How MATLAB Accesses Web Services 12-6

Accessing Web Services That Use WSDL Documents .. 12-7
Using the createClassFromWsdl Function 12-7
Example — createClassFromWsdl Function 12-8

Accessing Web Services Using MATLAB SOAP

Functions i, 12-11
Using the MATLAB SOAP Functions 12-11
Example — SOAP Functionsccouu... 12-11
Considerations When Using Web Services 12-14
XML-MATLAB Data Type Conversion Used in Web
SO VICES ittt e 12-14
Programming with Web Services 12-15
Where to Get Information About Web Services 12-17
Resources for Web Services and SOAP 12-17
Resources for WSDL 12-17
Tools for Creating Web Servicesccovvvn.. 12-17

13

Introduction 13-2
What Is the MATLAB Serial Port Interface? 13-2
Supported Serial Port Interface Standards 13-3

xix

Supported Platforms 0., 13-3

Using the Examples with Your Device 13-3
Overview of the Serial Port 13-5
Introduction i 13-5
What Is Serial Communication? 13-5
The Serial Port Interface Standard 13-6
Connecting Two Devices with a Serial Cable 13-6
Serial Port Signals and Pin Assignments 13-7
Serial Data Format, 13-11
Finding Serial Port Information for Your Platform 13-16
Using Virtual USB Serial Ports 13-18
Selected Bibliography, 13-18
Getting Started with Serial /O 13-20
Example: Getting Started 13-20
The Serial Port Sessioncciiiiiiiinnnnnn. 13-21
Configuring and Returning Properties 13-22
Creating a Serial Port Object 13-27
Overview of a Serial Port Object 13-27
Configuring Properties During Object Creation 13-29
The Serial Port Object Display 13-29
Creating an Array of Serial Port Objects 13-30
Connecting totheDevice 13-32
Configuring Communication Settings 13-33
Writing and Reading Data 13-34
Before YouBegin 13-34
Example — Introduction to Writing and Reading Data ... 13-34
Controlling Access to the MATLAB Command Line 13-35
Writing Data e 13-36
ReadingData 13-42
Example — Writing and Reading Text Data 13-48
Example — Parsing Input Data Using textscan 13-50
Example — Reading Binary Data 13-51
Events and Callbacks 13-55
Introduction i i 13-55

XX Contents

Example — Introduction to Events and Callbacks 13-56

Event Types and Callback Properties 13-56
Responding To Event Information 13-59
Creating and Executing Callback Functions 13-61
Enabling Callback Functions After They Error 13-62
Example — Using Events and Callbacks 13-62
Using Control Pins i, 13-65
Properties of Serial Port Control Pins 13-65
Signaling the Presence of Connected Devices 13-65
Controlling the Flow of Data: Handshaking 13-68
Debugging: Recording Information to Disk 13-71
Introduction i 13-71
Recording Propertiescoiiiiiiinnnnnnn. 13-71
Example: Introduction to Recording Information 13-72
Creating Multiple Record Files 13-72
Specifying a Filename, 13-73
The Record File Format 13-73
Example: Recording Information to Disk 13-74
Savingand Loading 13-78
Usingsaveandload 13-78
Using Serial Port Objects on Different Platforms 13-79
Disconnecting and CleaningUp 13-80
Disconnecting a Serial Port Object 13-80
Cleaning Up the MATLAB Environment 13-80
Property Reference 13-82
The Property Reference Page Format 13-82
Serial Port Object Propertiesccovvvv..... 13-82
Properties — Alphabetical List 13-86

xxi

xxii

Contents

Examples

A

Importing and ExportingData A-2
MATLAB Interface to Generic DLLs A-2
Calling C/C++ and Fortran Programs from MATLAB .. A-2
Creating C/C++ Language MEX-Files A-2
Creating Fortran MEX-Files A-3
Calling MATLAB from C and Fortran Programs A-3
Calling Java from MATLAB A-3
Using NET Framework A4
COM SUuppoOrt ...ttt e e e e e A-5
Web Servicesciuiiitiini i A-5
Serial Port I/O A-5

Index

Importing and Exporting
MAT-Files from C/C++ and
Fortran Programs

e “Using MAT-Files” on page 1-2
¢ “Examples of MAT-Files” on page 1-11
® “Compiling and Linking MAT-File Programs” on page 1-15

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

Using MAT-Files

In this section...

“Introduction” on page 1-2

“Importing Data into the MATLAB Workspace” on page 1-2
“Exporting Data from the MATLAB Workspace” on page 1-3
“Exchanging Data Files Between Platforms” on page 1-4
“Reading and Writing MAT-Files” on page 1-5

“Writing Character Data” on page 1-7

“Finding Associated Files” on page 1-8

Introduction

MAT-files, the data file format MATLAB® software uses for saving data to
your disk, provide a convenient mechanism for moving data between platforms
and for importing and exporting data to stand alone MATLAB applications.

To simplify your use of MAT-files in applications outside of the MATLAB
environment, we have developed a library of access routines with a mat prefix
that you can use in your own C, C++, or Fortran programs to read and write
MAT-files. Programs that access MAT-files also use the mx prefixed API
(application program interface) routines discussed in Chapter 4, “Creating
C/C++ Language MEX-Files” and Chapter 5, “Creating Fortran MEX-Files”.

Importing Data into the MATLAB Workspace

The best method for importing data into MATLAB depends on how much
data there is, whether the data is already in machine-readable form, and
what format the data is in. Here are some choices; select the one that best
meets your needs.

¢ Enter the data at the MATLAB command prompt.

For small amounts of data, less than 10-15 elements, type the data at the
command prompt using brackets []. This method is awkward for large
amounts of data because you cannot edit your input.

Using MAT-Files

®* (Create data in an M-file.

With a text editor, create an M-file to enter data as an explicit

list of elements. Use this method when the data is not already in
computer-readable format and must be typed in. Use the editor to change
the data or correct mistakes, then rerun the M-file to reenter the data.

¢ Load data from an ASCII flat file.

A flat file stores data in ASCII format, with fixed-length rows terminated
by new lines (carriage returns) and with spaces separating the numbers.
Edit ASCII flat files using a text editor and use the load command to read
them directly into the workspace. MATLAB creates a variable with the
same name as the file name.

* Read data using MATLAB I/0 functions.

Use fopen, fread, and other low-level MATLAB I/0 functions to read data.
This method allows you to load data files from applications that have their
own file formats.

¢ Write a MEX-file to read the data.

Use this method when you have subroutines for reading data files from
other applications. For more information, see “Using MEX-Files to Call
C/C++ and Fortran Programs” on page 3-5.

* Write a program to translate your data.

Write programs in C, C++, or Fortran to translate your data into MAT-file
format. Use the load command to read the MAT-file into the workspace.
Refer to the section, “Reading and Writing MAT-Files” on page 1-5, for
more information.

Exporting Data from the MATLAB Workspace
There are several methods for exporting MATLAB data.

* Create a diary file.

For small matrices, use the diary command to create a diary file, a log of
keyboard input and the resulting text output. You can use a text editor
to modify the file. The diary file displays the variables and includes

the MATLAB commands used during the session, which can be used in
documents and reports.

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

e Use the save command.

Save data in ASCII format using the save command with the -ascii
option. For example:

A = rand(4,3);
save temp.dat A -ascii

creates an ASCII file called temp.dat, which contains data like:

1.3889088e-001
2.0276522e-001
1.9872174e-001
6.0379248e-001

.7218792e-001 4.4509643e-001
.9881427e-001 9.3181458e-001
.5273927e-002 4.6599434e-001
.4678568e-001 4.1864947e-001

SN)

The -ascii option supports two-dimensional double and character
arrays only. Multidimensional arrays, cell arrays, and structures are not
supported.

e Use MATLAB I/O functions.

Write the data in a special format using fopen, fwrite, and other
low-level file I/O functions. Use this method for writing data files in
file formats required by other applications. For more information, see
“Exporting Binary Data with Low-Level I/O” in the Data Import and
Export documentation.

¢ (Create a MEX-file to write the data.

Use this method if you have subroutines for writing data files in the form
needed by other applications. For more information, see “Using MEX-Files
to Call C/C++ and Fortran Programs” on page 3-5.

e Translate data from a MAT-file.

Write data into a MAT-file using the save command, then write a program
in C, C++, or Fortran to translate the MAT-file into your own special format.
For more information, see “Reading and Writing MAT-Files” on page 1-5.

Exchanging Data Files Between Platforms

You can work with MATLAB software on different computer systems and
send MATLAB applications to users on other systems. MATLAB applications
consist of M-files containing functions and scripts, and MAT-files containing
binary data.

Using MAT-Files

Both types of files can be transported directly between machines: M-files
because they are platform independent and MAT-files because they contain a
machine signature in the file header. MATLAB checks the signature when
it loads a file and, if a signature indicates that a file is foreign, performs the
necessary conversion.

Using MATLAB across different machine architectures requires a facility for
exchanging both binary and ASCII data between the machines. Examples
of this type of facility include FTP, NFS, and Kermit. When using these
programs, be careful to transmit MAT-files in binary file mode and M-files in
ASCII file mode. Failure to set these modes correctly corrupts the data.

Reading and Writing MAT-Files

Use the save function to save MATLAB arrays currently in memory to a
binary file called a MAT-file. MAT-files have the extension .mat. The load
command reads MATLAB arrays from a MAT-file on disk back into the
MATLAB workspace.

A MAT-file contains one or more of the data types supported in MATLAB
version 5 or later, including strings, matrices, multidimensional arrays,
structures, and cell arrays. MATLAB writes the data sequentially onto disk
In a continuous byte stream.

MAT-File Interface Library

The MAT-file interface library contains routines for reading and writing
MAT-files. You can call these routines from your own C, C++, and Fortran
programs. Use these routines, rather than attempt to write your own code, to
perform these operations, since using the library insulates your applications
from future changes to the MAT-file structure.

Do not create different MATLAB sessions on different threads using MAT-File
Library functions. MATLAB libraries are not multithread safe so you can only
use these functions on a single thread at a time.

Functions in the MAT-file library begin with the three-letter prefix mat.
These tables list and describe the MAT-functions.

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

1-6

C MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a
MAT-file.

matGetFp Get an ANSI® C file pointer to a MAT-file.

matGetVariable Read a MATLAB array from a MAT-file.

matPutVariable Write a MATLAB array to a MAT-file.

matGetNextVariable Read the next MATLAB array from a
MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

matPutVariableAsGlobal

Put a MATLAB array into a MAT-file such
that the 1load command places it into the
global workspace.

matGetVariableInfo

Load a MATLAB array header from a
MAT-file (no data).

matGetNextVariableInfo

Load the next MATLAB array header from
a MAT-file (no data).

Fortran MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a
MAT-file.

matGetVariable Get a named MATLAB array from a
MAT-file.

matGetVariableInfo Get header for named MATLAB array from

a MAT-file.

Using MAT-Files

Fortran MAT-File Routines (Continued)

MAT-Function Purpose

matPutVariable Put a MATLAB array into a MAT-file.

matPutVariableAsGlobal Put a MATLAB array into a MAT-file.

matGetNextVariable Get the next sequential MATLAB array
from a MAT-file.

matGetNextVariableInfo Get header for next sequential MATLAB
array from a MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

Writing Character Data

By default, MATLAB writes character data to MAT-files using Unicode®
character encoding. To override this setting and use your system’s default
encoding instead, do one of the following:

®* From the command line or a MATLAB function, save your data to the
MAT-file using the command save -v6.

® From a C/C++ MEX-file, open the MAT-file you will write the data to using
the command matOpen -wL.

See the individual reference pages for these functions for more information.

You can also set a save preference for all MATLAB sessions. For more
information, see “MAT-Files Preferences” in the “General Preferences for
MATLAB” section of the Desktop Tools and Development Environment
documentation.

ASCIl Data Formats

When writing character data using Unicode character encoding (the default),
MATLAB checks if the data is 7-bit ASCII. If it is, MATLAB writes the 7-bit
ASCII character data to the MAT-file using 8 bits per character (UTF-8
format), thus minimizing the size of the resulting file. Any character data
that is not 7-bit ASCII is written in 16-bit Unicode form (UTF-16). This
algorithm operates on a per-string basis.

1-7

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

Note Level 4 MAT-files support only ASCII character data. You cannot write
a Level 4 MAT-file containing non-ASCII character data. If you create a
Level 4 MAT-file with such character data, the original representation of the
characters is not preserved.

Converting Character Data

Writing character data to MAT-files using Unicode character encoding
enables you to share data with users that have systems with a different
default system character encoding scheme, without character data loss

or corruption. Although conversion between Unicode encoding and other
encoding forms is often lossless, there are scenarios in which round-trip
conversions can result in loss of data. The following guidelines reduce your
chances of data loss or corruption.

In order to prevent loss or corruption of character data, all users sharing the
data must have at least one of the following in common:

¢ They exchange Unicode-based MAT-files, and use a version of MATLAB
that supports these files.

¢ Their computer systems all use the same default encoding, and all
character data in the MAT-file was written using the -v6 option

For example, if one user on a Japanese language operating system writes
ASCII data having more than 7 bits per character to a MAT-file, another
user running MATLAB version 6.5 on an English language operating system
will be unable to read the data accurately. However, if both have MATLAB
version 7, the information can be shared without corruption or loss of data.

Finding Associated Files

A collection of files associated with reading and writing MAT-files is located
on your disk. The following table lists the path to the required folders for
importing and exporting data using MAT-functions. The term matlabroot
refers to the root folder of your MATLAB installation. For more information
about MATLAB API files and folders, see “Files and Folders on UNIX
Systems” on page 3-56 or “Files and Folders on Windows Systems” on page
3-61.

Using MAT-Files

MAT-Function Folders

Platform | Contents Folder
Microsoft® | Include files matlabroot\extern\include
Windows® Libraries matlabroot\bin\win32 or
matlabroot\bin\win64
Examples matlabroot\extern\examples\eng_mat
UNIX® Include files matlabroot/extern/include
Libraries matlabroot/bin/arch
Examples matlabroot/extern/examples/eng _mat

Include Files

The include folder holds header files containing function declarations with
prototypes for the routines that you can access in the API Library. These files
are the same for both Windows and UNIX systems. The folder contains:

® The matrix.h header file that defines MATLAB array access and creation
methods
e The mat.h header file that defines MAT-file access and creation methods

Libraries

The libraries folder, that contains shared (dynamically linkable) libraries for
linking your programs, is platform-dependent.

Shared Libraries on Windows Systems. The bin folder contains the
shared libraries for linking your programs:

® The libmat.dll library of MAT-file routines (C/C++ and Fortran)

® The libmx.d1l1 library of array access and creation routines

Shared Libraries on UNIX Systems. The bin/arch folder, where arch is
your machine’s architecture, contains the shared libraries for linking your
programs. For example, on Apple® Macintosh® 64-bit systems, the folder is
bin/maci64:

1 Importing and Exporting MAT-Files from C/C++ and Fortran Programs

1-10

® The libmat.dylib library of MAT-file routines (C/C++ and Fortran)

® The libmx.dylib library of array access and creation routines

Example Files

The examples/eng_mat folder contains C/C++ and Fortran source code for
examples demonstrating how to use the MAT-file routines. For information
about these files, see “Examples of MAT-Files” on page 1-11.

Examples of MAT-Files

Examples of MAT-Files

In this section...

“List of Examples” on page 1-11

“Creating a MAT-File in C” on page 1-11
“Creating a MAT-File in C++” on page 1-12
“Reading a MAT-File in C/C++” on page 1-12
“Creating a MAT-File in Fortran” on page 1-13

“Reading a MAT-File in Fortran” on page 1-14

List of Examples

The matlabroot/examples/eng_mat folder contains C/C++ and Fortran
source code for examples demonstrating how to use the MAT-file routines.
These examples create standalone programs. The source code is the same for

both Windows and

UNIX systems.

Library

Description

matcreat.c

C program that demonstrates how to use the library
routines to create a MAT-file that can be loaded into
MATLAB

matcreat.cpp

C++ version of the matcreat.c program

matdgns.c

C program that demonstrates how to use the library
routines to read and diagnose a MAT-file

matdemol.F

Fortran program that demonstrates how to call the
MATLAB MAT-file functions from a Fortran program

matdemo2.F

Fortran program that demonstrates how to use the
library routines to read the MAT-file created by
matdemol.F and describe its contents

Creating a MAT-File in C

The program, matcreat.c, illustrates how to use the library routines to create
a MAT-file that can be loaded into the MATLAB workspace. The program also

1-11

1 Importing and Exporting MAT-Files from C/C++ and Fortran Programs

demonstrates how to check the return values of MAT-function calls for read or
write failures. To see the code, you can open the file in the MATLAB Editor.

To produce an executable version of this program, compile the file and link it
with the appropriate library. For details on how to compile and link MAT-file
programs on various platforms, see “Compiling and Linking MAT-File
Programs” on page 1-15.

Once you have compiled and linked your MAT-file program, you can run
the stand alone application you have just produced. This program creates
mattest.mat, a MAT-file that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click its icon or enter
matcreat at the system prompt:

matcreat
Creating file mattest.mat...

To verify that the MAT-file was created, at the command prompt, type:

whos -file mattest.mat

Name Size Bytes Class

GlobalDouble 3x3 72 double array (global)
LocalDouble 3x3 72 double array
LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

Creating a MAT-File in C++

There is a C++ version of matcreat.c in the
matlabroot\extern\examples\eng mat folder. To see matcreat.cpp, open
the file in the MATLAB Editor.

Reading a MAT-File in C/C++

This program, matdgns.c, illustrates how to use the library routines to read
and diagnose a MAT-file. To see the code, you can open the file in MATLAB
Editor.

After compiling and linking this program, you can view its results:

1-12

Examples of MAT-Files

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble
LocalString
LocalDouble

Examining the header for each variable:

According to its header, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its header, array LocalString has 2 dimensions
and was a local variable when saved

According to its header, array LocalDouble has 2 dimensions
and was a local variable when saved

Reading in the actual array contents:

According to its contents, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its contents, array LocalString has 2 dimensions
and was a local variable when saved

According to its contents, array LocalDouble has 2 dimensions
and was a local variable when saved

Done

Creating a MAT-File in Fortran

This program, matdemo1.F, creates the MAT-file, matdemo.mat. To see the
code, you can open the file in MATLAB Editor.

Once you have compiled and linked your MAT-file program, you can run
the stand alone application you have just produced. This program creates

a MAT-file, matdemo.mat, that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click its icon or enter
matdemo1 at the system prompt:

matdemo1
Creating MAT-file matdemo.mat
Done creating MAT-file

To verify that the MAT-file has been created, at the command prompt, enter:

1-13

1 Importing and Exporting MAT-Files from C/C++ and Fortran Programs

whos -file matdemo.mat

Name Size Bytes Class
Numeric 3x3 72 double array
String 1x33 66 char array

Grand total is 42 elements using 138 bytes

Note For an example of a Microsoft Windows stand alone
program (not MAT-file specific), see engwindemo.c in the
matlabroot\extern\examples\eng mat folder.

Reading a MAT-File in Fortran

This program, matdemo2.F, illustrates how to use the library routines to read
the MAT-file created by matdemo1.F and describe its contents. To see the
code, you can open the file in the MATLAB Editor.

After compiling and linking this program, you can view its results:

matdemo2

Directory of Mat-file:

String

Numeric

Getting full array contents:
1

Retrieved String
With size 1-by- 33
3

Retrieved Numeric
With size 3-by- 3

1-14

Compiling and Linking MAT-File Programs

Compiling and Linking MAT-File Programs

In this section...

“Compiling and Linking on UNIX Operating Systems” on page 1-15
“Compiling and Linking on Windows Operating Systems” on page 1-17
“Required Files from Third-Party Sources” on page 1-17

“Working Directly with Unicode Encoding” on page 1-19

Compiling and Linking on UNIX Operating Systems

At run-time, you must tell the UNIX operating system where the API shared
libraries reside. These sections provide the necessary UNIX commands,
depending on your shell and system architecture.

Setting Run-Time Library Path

Set the library path as follows for the C and Bourne shells. Replace the terms
envvar and pathspec with the appropriate values from the following table.

In the C shell, set the library path using the command:

setenv envvar

pathspec

In the Bourne shell, use:

envvar = pathspec:envvar

export envvar

Operating
System

envvar

pathspec

Linux®

LD_LIBRARY_PATH

matlabroot/bin/glnx86:
matlabroot/sys/os/glnx86

64-bit Linux

LD_LIBRARY_PATH

matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

1-15

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

1-16

Operating

System envvar pathspec

Apple DYLD_LIBRARY_PATH matlabroot/bin/maci:
Macintosh matlabroot/sys/os/maci
(Intel®)

64-bit DYLD_LIBRARY_PATH matlabroot/bin/maci64:
Macintosh matlabroot/sys/os/maci64
(Intel)

For example, for the C shell on a Macintosh system use:

setenv DYLD_LIBRARY_PATH
matlabroot/bin/maci64:matlabroot/sys/os/maci64

and for the Bourne shell:

DYLD_LIBRARY_PATH=matlabroot/bin/maci64:matlabroot/sys/os/maci64:$DYLD_LIBRARY_PATH
export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.cshrc for C
shell or ~/.profile for Bourne shell.

Using the Options File

The MATLAB options file, matopts.sh, lets you use the mex script to easily
compile and link MAT-file applications. For example, to compile and link the
matcreat.c example, first copy the file using the command:

matlabroot/extern/examples/eng_mat/matcreat.c

to a writable folder, then use the following command to build it:

mex -f matlabroot/bin/matopts.sh matcreat.c

If you need to modify the options file for your particular compiler or platform,
use the -v switch to view the current compiler and linker settings and then
make the appropriate changes in a local copy of the matopts.sh file.

Compiling and Linking MAT-File Programs

Compiling and Linking on Windows Operating
Systems

To compile and link Fortran or C/C++ MAT-file programs, use the

mex script with a MAT options file. The MAT options files reside in
matlabroot\bin\win32\mexopts or matlabroot\bin\win64\mexopts and
are named *engmatopts.bat, where * represents the compiler type and
version.

For example, to compile and link the stand alone MAT application matcreat.c
using the Microsoft® Visual C++® Version 9.0 compiler on a Microsoft
Windows operating system, first copy the file:

matlabroot\extern\examples\eng_mat\matcreat.c

to a writable folder, and then use the following command to build it:

mex -f matlabroot\bin\win32\mexopts\msvc90engmatopts.bat matcreat.c

If you need to modify the options file for your particular compiler, use the -v
switch to view the current compiler and linker settings and then make the
appropriate changes in a local copy of the options file.

Required Files from Third-Party Sources

MATLAB requires the following data and library files for building any
MAT-file application. You must also distribute these files along with any
MAT-file application that you deploy to another system.

Third-Party Data Files

When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure that the appropriate Unicode
data file is installed in the matlabroot/bin/arch folder. MATLAB uses this
file to support Unicode encoding.

For systems that order bytes in a big-endian manner, use icudt32b.dat.

For systems that order bytes in a little-endian manner, use icudt321.dat.

1-17

Importing and Exporting MAT-Files from C/C++ and Fortran Programs

1-18

Third-Party Libraries

When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure to install the appropriate
libraries in the matlabroot/bin/arch folder:

Library File Names by Operating System

Windows UNIX Macintosh (Intel)
libmat.dll libmat.so libmat.dylib
libmx.d1ll libmx.so libmx.dylib

In addition to these libraries, you must also have all third-party library files
that 1ibmat depends on. MATLAB uses these additional libraries to support
Unicode character encoding and data compression in MAT-files. These library
files must reside in the same folder as 1ibmx.

You can determine what most of these libraries are using the platform-specific
methods described below.

Linux Operating System
Type the following command:

1dd -d libmat.so

Macintosh Operating System
Type the following command:

otool -L libmat.dylib

Windows Operating System

On Windows systems, the third-party product Dependency Walker can be
used to diagnose errors related to loading and executing modules. Dependency
Walker is a free utility that scans any 32-bit or 64-bit Windows module and
builds a hierarchical tree diagram of all dependent modules. For each module
found, it lists all the functions that are exported by that module, and which of
those functions are actually being called by other modules. You can download
the Dependency Walker utility from the following Web site:

Compiling and Linking MAT-File Programs

http://www.dependencywalker.com/

See the Technical Support solution 1-2RAL4L for information on using the
Dependency Walker.

Drag and drop the file matlabroot/bin/win32/1libmat.d1ll or
matlabroot/bin/win64/1libmat.d1ll into Depends window.

Working Directly with Unicode Encoding

If you need to manipulate Unicode text directly in your application, the latest
version of International Components for Unicode (ICU) is freely available
online from the IBM® Corporation Web site at:

http://icu.sourceforge.net/download

1-19

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html
http://icu.sourceforge.net/download

1 Importing and Exporting MAT-Files from C/C++ and Fortran Programs

1-20

MATLAB Interface to
Shared Libraries

e “Calling Functions in Shared Libraries” on page 2-2

® “Passing Arguments to Shared Library Functions” on page 2-12
* “Working with Pointers” on page 2-23

* “Working with Structures” on page 2-37

2 MATLAB® Interface to Shared Libraries

Calling Functions in Shared Libraries

In this section...

“What Is a Shared Library?” on page 2-2
“Loading the Library” on page 2-3
“Unloading the Library” on page 2-4
“Viewing Library Functions” on page 2-4

“Invoking Library Functions” on page 2-7

“Limitations to Shared Library Support” on page 2-8

What Is a Shared Library?

A shared library is a collection of functions designed to be dynamically loaded
by an application at run time. This MATLAB interface supports libraries
containing functions programmed in any language, provided the functions
have a C interface. MATLAB supports dynamic linking on all supported
platforms.

Platform Shared Library File Extension
Microsoft Windows dynamic link library file .dl1

UNIX and Linux shared object file .SO

Apple Macintosh dynamic shared library .dylib

A shared library needs a header file, which provides signatures for the
functions in the library. A signature, or function prototype, establishes the
name of the function and the number and types of its parameters. You need
to know the full path of the shared library and its header file.

MATLAB accesses C routines built into external, shared libraries through a
command-line interface. This interface lets you load an external library into
MATLAB memory and access functions in the library. Although types differ
between the two language environments, in most cases you can pass types to
the C functions without converting. MATLAB does this for you.

Details about using a shared library are in the topics:

Cadlling Functions in Shared Libraries

® “Loading the Library” on page 2-3

* “Viewing Library Functions” on page 2-4

¢ “Invoking Library Functions” on page 2-7

To call a library function, you need to determine the data passed to and from
the function. For information about data, see:

® “Passing Arguments to Shared Library Functions” on page 2-12

e “Manually Converting Data Passed to Functions” on page 2-22

* “Working with Pointers” on page 2-23

* “Working with Structures” on page 2-37

When you are finished working with the shared library, it is important to

unload the library to free memory, as described in “Unloading the Library”
on page 2-4.

For more information, see “Limitations to Shared Library Support” on page
2-8.

Loading the Library

To give MATLAB software access to functions in a shared library, you must
first load the library into memory. After you load the library, you can request
information about library functions and call them directly from the MATLAB
command line. When you no longer need the library, unload it from memory
to conserve memory usage.

To load a shared library into MATLAB, use the loadlibrary function. The
most common syntax for loadlibrary is:

loadlibrary('shrlib', 'hfile')

where shrlib is the shared library file name, and hfile is the name of the
header file containing the function prototypes. See the loadlibrary reference
page for variations in the syntax and information on library file extensions.

2-3

2 MATLAB® Interface to Shared Libraries

Note The header file provides signatures for the functions in the library and
1s a required argument for loadlibrary.

For example, you can use loadlibrary to load the 1ibmx library that defines
the MATLAB mx routines. The following command creates the full path for
the library header file, matrix.h:

hfile = [matlabroot '\extern\include\matrix.h'];

To load the library, type:

loadlibrary('libmx', hfile)

Unloading the Library

Use the unloadlibrary function to unload the library and free up memory.
For example:

unloadlibrary libmx

Viewing Library Functions

* “Viewing Functions in the Command Window” on page 2-4

¢ “Viewing Functions in a GUI” on page 2-5

Viewing Functions in the Command Window

Use the libfunctions command to display information about a library’s
functions in the MATLAB Command Window. For example, to see what
functions are available in the 1ibmx library, type:

if not(libisloaded('libmx'))
hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile);

end

libfunctions libmx

MATLAB displays (in part):

Cadlling Functions in Shared Libraries

Functions in library libmx:

mxAddField mxGetScalar
mxArrayToString mxGetString_ 730
mxCalcSingleSubscript_ 730 mxGetUserBits
mxCalloc mxIsCell
mxCreateCellArray_ 730 mxIsChar
mxCreateCellMatrix_730 mxIsClass

To view function signatures, use the -full switch. This shows the MATLAB
syntax for calling functions written in C. The types used in the argument lists
and return values are MATLAB types, not C types. For more information on
types, see “C and MATLAB Equivalent Types” on page 2-12. For example,

at the command line enter:

libfunctions libmx -full

MATLAB displays (in part):
Functions in library libmx:

[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)
[cstring, MATLAB array] mxArrayToString(MATLAB array)

lib.pointer mxCalloc(uint32, uint32)

[MATLAB array, uint32Ptr] mxCreateCellArray_730(uint32, uint32Ptr)
MATLAB array mxCreateCellMatrix_730(uint32, uint32)

[MATLAB array, uint32Ptr] mxCreateCharArray_730(uint32, uint32Ptr)

Viewing Functions in a GUI
Use the 1libfunctionsview function to get information about functions in a
library. MATLAB creates a new window to display the following information:

2-5

2 MATLAB® Interface to Shared Libraries

2-6

Heading

Description

Return Type

Types the method returns

Name

Function name

Arguments

Valid types for input arguments

To see the functions in the libmx library, type:

if not(libisloaded('libmx'))

hfile = [matlabroot

loadlibrary('libmx', hfile);

end

libfunctionsview libmx

MATLAB displays the following window:

"\extern\include\matrix.h'];

Functions in library libmx i] 5]
Return Type | MNarme | Arguments

[int32, MATLAR array, cstring]

mxAddField

(MATLAB array, cstring)

B

[cstring, MATLAR array]
[int32, MATLAR array, int32Ptr]
lib.pointer

MATLAB array

[MATLAE atray, int32Pt]
MATLAB array

[MATLAE atray, int32Pt]
[MATLAE array, stringPtrPt]
MATLAB array

MATLAR array

[MATLAE atray, int32Pt]
MATLAR array

MATLAR array

Aty ToString
mxCalcSingleSubscript
mxCalloc
mxClearScalarDoublaFlag
mxCreateCallaray
mxCreate Cellvatrix
mxCreataChatarray
mxCreateCharMatrixzF romStrings
mxCreateDoublehatrix
mxCreateDoubleScalar
mxCreatelogicalArray
mxCreatelogicalhatrix
mxCreatelogicalScalar

(MATLAB array)

(MATLAB array, int32, int32Ptr
{Uint3z2, uinta2) %
(MATLAB array)

(int32, int3ZP1tr

(int32, int32)

(int32, int3ZP1tr

(int32, stringPtrPtr)

(int32, int32, mxComplexity)
({double)

(int32, int32P1tr

(Uint32, uinta2)

(hoaly

[l

The types used in the argument lists and return values are MATLAB types,
not C types. For more information on types, see “C and MATLAB Equivalent

Types” on page 2-12.

Cadlling Functions in Shared Libraries

Invoking Library Functions

After loading a shared library into the MATLAB workspace, use the calllib
function to call functions in the library. The syntax for calllib is:

calllib('libname', 'funcname', argi, ..., argN)

You need to specify the library name, function name, and any arguments that
get passed to the function.

The following example calls functions from the 1ibmx library. To load the
library, type:

if not(libisloaded('libmx'))
hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile);

end

To create an array vy, type:
y = rand(4, 7, 2);
To get information about y, type:
calllib('libmx', 'mxGetNumberOfElements', y)

MATLAB displays the number of elements in the array:

ans =
56

Type:
calllib('libmx', 'mxGetClassID', y)

MATLAB displays the class of the array:

ans =
mxDOUBLE_CLASS

For information on how to define the argument types, see “Passing Arguments
to Shared Library Functions” on page 2-12.

2 MATLAB® Interface to Shared Libraries

Limitations to Shared Library Support

The MATLAB shared library interface supports C library routines only. Most
professionally-written libraries designed to be used by multiple languages
and platforms work fine. Many homegrown libraries or libraries that have
only been tested from C++ have interfaces that are not usable and require
modification or an interface layer. In this case, we recommend using
MEX-files, as described in Chapter 4, “Creating C/C++ Language MEX-Files”.

Refer to the following topics for limitations to shared library support:

e “Using C++ Libraries” on page 2-8

e “Using Bit Fields” on page 2-9

¢ “Using Enum Declarations” on page 2-10

e “Unions Not Supported” on page 2-10

¢ “Compiler Dependencies” on page 2-11

¢ “Limitations Using Structures” on page 2-11
¢ “Limitations Using Pointers” on page 2-11

¢ “Functions with Variable Number of Input Arguments Not Supported”
on page 2-11

Using C++ Libraries

The shared library interface does not support C++ classes or overloaded
functions elements.

If you need to load a library written in C++, all functions must be declared
as extern C . For example, the following function prototype from the file
shrlibsample.h shows the syntax to use for each function:

#ifdef __cplusplus
extern "C" {

#endif

void addMixedTypes (
short x,

int Y,

double z

);

Cadlling Functions in Shared Libraries

/* other prototypes may be here */
#ifdef _ cplusplus

}
#endif

The following C++ code is not legal C code for the header file:

extern "C" void addMixedTypes(short x, int y, double z);
Using Bit Fields
You can modify a bit field declaration by using type int or an equivalent. For
example, if your library has the following declared in its header file:

int myfunction();

struct mystructure

{
/* note the sum of fields bits */
unsigned field1 :4;
unsigned field2 :4;

b

you can replace it with:

int myfunction();

struct mystructure

{
/* field 8 bits wide to be manipulated in MATLAB */

char allfields; /* A char is 8 bits on all supported platforms */
b

It is then possible to access the data in the two fields using bit masking in
MATLAB.

2 MATLAB® Interface to Shared Libraries

2-10

Using Enum Declarations

char definitions for enum are not supported. In C a char constant "A'

for instance is automatically converted to its numeric equivalent (65) but
MATLAB does not do this so the header file must be modified first replacing
"A' with the number 65 (int8(A') == 65). For example, replace:

enum Enumi1 {ValA='A', ValB='B'};

with:

enum Enumi {ValA=65, ValB=66};

Unions Not Supported

Unions are not supported. It may be possible to modify the source code taking
out the union declaration and replacing it with the largest alternative, then
writing MATLAB code to interpret the results as needed. For example,
replace the following union:

struct mystruct

{
union
{
struct {char bytel,byte2;};
short word;
}s
b
with:

struct mystruct

{

short word;

b

where on a little-endian based machine, byte1 is mod(f,256), byte2 is /256,
and word=byte2*256+byte1.

Cadlling Functions in Shared Libraries

Compiler Dependencies

Header files must be compatible with the supported compilers on a platform.
For an up-to-date list of supported compilers, see the Supported and
Compatible Compilers Web page. You cannot load external libraries with
explicit dependencies on other compilers.

Limitations Using Structures

Nested structures or structures containing a pointer to a structure are not
supported. However, MATLAB can access an array of structures created
in an external library.

Limitations Using Pointers

Function Pointers. The shared library interface does not support library
functions that work with function pointers. If the functions accepts a NULL
pointer, it is possible to call the function, but it may not be useful.

Multilevel Pointers. Limited support for multilevel pointers and structures
containing pointers. Using inputs and outputs and structure members
declared with more then two levels of indirection is unsupported. For
example, double ***outp translated to doublePtrPtrPtr is not supported.

Functions with Variable Number of Input Arguments Not
Supported

The shared library interface does not support library functions with variable
number of arguments, which are represented by an ellipsis (. . .).

You can create multiple alias functions in a prototype file, one for each set of

arguments used to call the function. For more information, see the discussion
of prototype files in the loadlibrary reference page.

2-11

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

2 MATLAB® Interface to Shared Libraries

2-12

Passing Arguments to Shared Library Functions

In this section...

“C and MATLAB Equivalent Types” on page 2-12

“Passing Arguments” on page 2-14

“Examples of Passing Data to Shared Libraries” on page 2-15
“Passing Pointers” on page 2-21

“Passing a NULL Pointer” on page 2-22

“Manually Converting Data Passed to Functions” on page 2-22

C and MATLAB Equivalent Types

The shared library interface supports all standard scalar C types. The
following table shows these C types with their equivalent MATLAB types.
MATLAB uses the type from the right column for arguments having the C
type shown in the left column. For examples using these arguments, see
“Passing Primitive Types” on page 2-16 and “Passing Strings” on page 2-18.

Note All scalar values returned by MATLAB are of type double.

MATLAB Primitive Types

C Type Equivalent MATLAB Type
char, byte int8

unsigned char, byte uint8

short int16

unsigned short uint16

int int32

long (32-bit) int32

long (64-bit) int64

unsigned int, unsigned long uint32

Passing Arguments to Shared Library Functions

MATLAB Primitive Types (Continued)

C Type Equivalent MATLAB Type
float single

double double

char * cstring (1xn char array)
*char(] cell array of strings

The following table shows extended MATLAB types in the right column.
These are instances of the MATLAB 1ib.pointer class rather than standard
MATLAB types. For information on the 1ib.pointer class, see “Working
with Pointers” on page 2-23. For an example using pointer arguments, see
“Passing a Pointer” on page 2-17.

MATLAB Extended Types

C Type Equivalent MATLAB Type
integer pointer types (int *) (u)int(size)Ptr
Null-terminated string passed by cstring

value

Null-terminated string passed by stringPtr

reference (from a libpointer only)

Array of pointers to strings (or one stringPtrPtr

**char)

Matrix of signed bytes int8Ptr

float * singlePtr

double * doublePtr

mxArray * MATLAB array

void * voidPtr

void ** voidPtrPtr

type ** Same as typePtr with an added Ptr

(e.g., double **
1s doublePtrPtr)

2-13

2 MATLAB® Interface to Shared Libraries

2-14

Passing Arguments

Here are some important things to note about the input and output arguments
shown in the Functions in library shrlibsample listing:

Many arguments (like int32 and double) are similar to their C
counterparts. In these cases, you need only to pass in the MATLAB types
shown for these arguments.

Some C arguments (for example, **double, or predefined structures), are
different from standard MATLAB types. In these cases, you can either
pass a standard MATLAB type and let MATLAB convert it for you, or
you convert the data yourself using the MATLAB functions libstruct
and libpointer. For more information, see “Manually Converting Data
Passed to Functions” on page 2-22.

C input arguments are often passed by reference. Although MATLAB does
not support passing by reference, you can create MATLAB arguments
that are compatible with C pointers. In the Functions in library
shrlibsample listing, these are the arguments with names ending in Ptr
and PtrPtr. For information on using these types, see “Working with
Pointers” on page 2-23.

C functions often return data in input arguments passed by reference.
MATLAB creates additional output arguments to return these values. Note
that in the listing in the previous section, all input arguments ending in
Ptr or PtrPtr are also listed as outputs.

Guidelines for Passing Arguments

Nonscalar arguments must be declared as passed by reference in the
library functions.

If the library function uses single subscript indexing to reference a
two-dimensional matrix, keep in mind that C programs process matrices
row by row while MATLAB processes matrices by column. To get C
behavior from the function, transpose the input matrix before calling the
function, and then transpose the function output.

When passing an array having more than two dimensions, the shape of the
array might be altered by MATLAB. To ensure that the array retains its
shape, store the size of the array before making the call, and then use

Passing Arguments to Shared Library Functions

this same size to reshape the output array to the correct dimensions. For
example:

vs = size(vin) % Store the original dimensions

Vs =
2 5 2

vout = calllib('shrlibsample', '‘multDoubleArray', vin, 20);

size(vout) % Dimensions have been altered
ans =
2 10
vout = reshape(vout, vs); % Restore the array to 2-by-5-by-2

size(vout)
ans =
2 5 2

e Use an empty array, [], to pass a NULL parameter to a library function
that supports optional input arguments. This is valid only when the
argument is declared as a Ptr or PtrPtr as shown by libfunctions or
libfunctionsview.

Examples of Passing Data to Shared Libraries

® “Sample Shared Library shrlibsample” on page 2-15

e “Passing Primitive Types” on page 2-16

e “Passing a Pointer” on page 2-17

e “Passing Strings” on page 2-18

¢ “Passing Enumerated Types” on page 2-19

* “Passing Two Dimensional MATLAB Arrays to C Functions” on page 2-20

Sample Shared Library shrlibsample

MATLAB software includes a sample external library called shrlibsample.
The library is in the folder matlabroot\extern\examples\shrlib.

2-15

2 MATLAB® Interface to Shared Libraries

To use the shrlibsample library, you first need to either add this folder to
your MATLAB path with the command.:

addpath(fullfile(matlabroot , 'extern', 'examples', 'shrlib'))

or make the folder your current working folder with the command:

cd(fullfile(matlabroot , 'extern', 'examples', 'shrlib'))

The following example loads the shrlibsample library and displays the
MATLAB syntax for calling functions in the library:

loadlibrary shrlibsample shrlibsample.h
libfunctions shrlibsample -full

MATLAB displays:

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef (double, doublePtr, double)
double addMixedTypes(int16, int32, double)
[double, c_structPtr] addStructByRef(c_structPtr)
double addStructFields(c_struct)

c_structPtrPtr allocateStruct(c_structPtrPtr)
voidPtr deallocateStruct(voidPtr)

lib.pointer exportedDoubleValue

lib.pointer getListOfStrings

doublePtr multDoubleArray(doublePtr, int32)
[1lib.pointer, doublePtr] multDoubleRef(doublePtr)
int16Ptr multiplyShort(int16Ptr, int32)

doublePtr print2darray(doublePtr, int32)
printExportedDoubleValue

cstring readEnum(Enum1)

[cstring, cstring] stringToUpper(cstring)

Passing Primitive Types

For primitive types, MATLAB automatically converts any argument to the
type expected by the external function. For example, you can pass a double to
a function that expects to receive a byte (8-bit integer) and MATLAB does
the conversion for you.

2-16

Passing Arguments to Shared Library Functions

The following C function takes arguments that are of types short, int, and
double:

EXPORTED_FUNCTION double addMixedTypes(short x, int y, double z)
{

return (x +y + z);

}

You can pass all of the arguments as type double from MATLAB. MATLAB
determines what type of data is expected for each argument and performs the
appropriate conversions. For example, type:

calllib('shrlibsample’', 'addMixedTypes', 127, 33000, pi)

MATLAB displays:

ans =
3.3130e+004

Passing a Pointer

MATLAB automatically converts an argument passed by value into an
argument passed by reference when the external function prototype defines
the argument as a pointer. For example, a MATLAB double argument
passed to a function that expects double * is converted to a double pointer
by MATLAB.

addDoubleRef is a C function that takes an argument of type double *:

EXPORTED_FUNCTION double addDoubleRef (double x, double *y, double z)
{

return (x + *y + z);

}

Call the function with three arguments of type double, and MATLAB handles
the conversion:

calllib('shrlibsample', 'addDoubleRef', 1.78, 5.42, 13.3)

MATLAB displays:

ans =

2-17

2 MATLAB® Interface to Shared Libraries

20.5000

Passing Strings
For arguments that require char *, you can pass a MATLAB string (a
character array).

For example, the following C function takes a char * input argument:

EXPORTED_FUNCTION char* stringToUpper(char *input)

{
char *p = input;
if (p != NULL)
while (*p!=0)
*pt+ = toupper(*p);
return input;
}

libfunctions shows that you can use a MATLAB cstring for this input.
Type:

libfunctions shrlibsample -full
Look for the following stringToUpper signature:

[cstring, cstring] stringToUpper(cstring)

Create a MATLAB character array, str, and pass it as the input argument:

str = 'This was a Mixed Case string';
calllib('shrlibsample', 'stringToUpper', str)

MATLAB displays:

ans =
THIS WAS A MIXED CASE STRING

Although the input argument that MATLAB passes to stringToUpper
resembles a pointer to type char, it is not a true pointer data type because it
does not contain the address of the MATLAB character array, str. When the

2-18

Passing Arguments to Shared Library Functions

function executes, it returns the correct result, but does not modify the value
in str. If you examine str, you find it is unchanged. Type:

str

MATLAB displays:

str =
This was a Mixed Case string

Passing Enumerated Types
For arguments defined as C enumerated types, you can pass either the
enumeration string or its integer equivalent.

The readEnum function from the shrlibsample library returns the
enumeration string that matches the argument passed in. Here is the Enum1
definition and the readEnum function in C:

typedef enum Enumi {en1 = 1, en2, en4 = 4} TEnumi;

EXPORTED_FUNCTION char* readEnum(TEnumi val)
{
switch (val) {
case 1 :return "You chose eni";
case 2: return "You chose en2";
case 4: return "You chose en4";
default : return "enum not defined";

In MATLAB, you can express an enumerated type as either the enumeration
string or its equivalent numeric value. In the previous example, the TEnum1
definition declares enumeration en4 equal to 4. Call readEnum first with

a string:

calllib('shrlibsample’', 'readEnum', 'en4')

MATLAB displays:

ans =

2-19

2 MATLAB® Interface to Shared Libraries

You chose en4

Now call it with the equivalent numeric argument 4:

calllib('shrlibsample’, 'readEnum', 4)

MATLAB displays:

ans =
You chose en4

Passing Two Dimensional MATLAB Arrays to C Functions
All MATLAB data 1s stored columnwise, and MATLAB uses one-based
indexing for subscripts. MATLAB uses these conventions because it was
originally written in Fortran. To demonstrate how this may affect your
MATLAB data when using C functions, create the following matrix:

m=1:12;
m=reshape(m,4,3)
dims = size(m)

Matrix m is a 4-by-3 array containing:

m =
1 5 9
2 6 10
3 7 11
4 8 12
dims =
3

You might need to transpose MATLAB arrays before passing them to a
C function since C assumes a row by column format. The print2darray
function in the shrlibsample library shows this. Here is the C function:

EXPORTED_FUNCTION void print2darray(double my2d[][3],int len)
{

int indxi,indxj;

for(indxi=0;indxi<len;++indxi)

{

2-20

Passing Arguments to Shared Library Functions

for(indxj=0;indxj<3;++indxj)
{

mexPrintf ("%10g9" ,my2d[indxi][indxj]);
}

mexPrintf("\n");

The first argument is a two dimensional array. The len argument is the
number of rows. The function displays each element of the matrix. Using
matrix m:

calllib('shrlibsample', 'print2darray',m,4)

MATLAB displays:

OoON B =
- 0 O N
N ©O© o W

You must transpose m to get the desired result:

calllib('shrlibsample’, 'print2darray',m',4)
Now MATLAB displays:
10

11
12

A OON =
0N O

Passing Pointers

Many functions in external libraries use arguments that are passed by
reference. To enable you to interact with these functions, MATLAB passes
what is called a pointer object to these arguments. This should not be confused
with “passing by reference” in the typical sense of the term. See “Working
with Pointers” on page 2-23 for more information.

2-21

2 MATLAB® Interface to Shared Libraries

Passing a NULL Pointer

You can create a NULL pointer to pass to library functions in the following
ways:

® Pass a 0 as the argument.

e Use the libpointer function:

p = libpointer; % no arguments
p = libpointer('string') % string argument
p = libpointer('stringPtr') % pointer to a string argument

e Use the libstruct function:

p = libstruct; % no arguments

Manually Converting Data Passed to Functions

Under most conditions, MATLAB software automatically converts data
passed to and from external library functions to the type expected by the
external function. However, you may choose to convert your argument data
manually. Circumstances under which you might find this advantageous are:

® When you pass the same piece of data to a series of library functions, you
can convert it once manually before the call to the first function rather than
having MATLAB convert it automatically on every call. This reduces the
number of unnecessary copy and conversion operations.

® When you pass large structures, you can save memory by creating
MATLAB structures that match the shape of the C structures used in
the external function instead of using generic MATLAB structures. The
libstruct function creates a MATLAB structure modeled from a C
structure taken from the library. See “Working with Structures” on page
2-37 for more information.

® When an argument to an external function uses more than one level of
referencing (e.g., double **), you must pass a pointer created using the
libpointer function rather than relying on MATLAB to convert the type
automatically.

2-22

Working with Pointers

Working with Pointers

In this section...
“The libpointer Object” on page 2-23

“Constructing a libpointer Object” on page 2-24

“Creating a Pointer to a Primitive Type” on page 2-24

“Creating a Pointer to a Structure” on page 2-28

“Passing a Pointer to the First Element of an Array” on page 2-30
“Putting a String into a Void Pointer” on page 2-30

“Passing an Array of Strings” on page 2-31

“Memory Allocation for an External Library” on page 2-33

“Multilevel Pointers” on page 2-34

The libpointer Object

In most cases, you can pass arguments to an external function by value, even
when the prototype for that function declares the argument to be a pointer.
The calllib function uses the header file to determine how to pass the
function arguments.

There are times, however, when it is useful to pass MATLAB arguments by
reference, similar to using a C pointer:
®* You want to modify the data in the input arguments.

® You are passing large amounts of data, and you don’t want to make copies
of the data.

® The library stores and uses the pointer for a period of time so you want the
MATLAB function to control the lifetime of the 1ibpointer object.

In these cases, you use the 1libpointer function to construct a libpointer object
of a specified type. A libpointer is an instance of a MATLAB lib.pointer
class. The properties of this class are Value and DataType. The methods are:

Methods for class lib.pointer:

2-23

2 MATLAB® Interface to Shared Libraries

2-24

disp plus setdatatype
isNull reshape

For information about using the setdatatype method, see “Reading Function
Return Values” on page 2-26. For an example using the plus operator, see
“Creating a Pointer by Offsetting from an Existing libpointer” on page 2-27.
For an example using the reshape method, see “Guidelines for Passing
Arguments” on page 2-14.

When working with structures, use the libstruct function, as described in
“Working with Structures” on page 2-37.

Constructing a libpointer Object
To construct a pointer, use the function 1ibpointer with this syntax:

p = libpointer('type', 'value')

For example, you want to create a pointer, pv, to a value of type int16. In
this case, the type of the pointer is the data type (int16) suffixed by the
letters Ptr:

pv = libpointer('int16Ptr', 485);

To read the properties of the variable pv, type:
get(pv)

MATLAB displays:

Value: 485
DataType: 'inti16Ptr'

Creating a Pointer to a Primitive Type

The following example illustrates how to construct and pass a pointer, and
how to interpret the output. It uses the multDoubleRef function in the
shrlibsample library, which multiplies the input by 5. The input is a pointer
to a double, and it returns a pointer to a double. The C code for the function
is:

EXPORTED_FUNCTION double *multDoubleRef(double *x)

Working with Pointers

*y K= 5;
return Xx;

}

Construct a libpointer object, xp, to point to the input data, x.

x = 15;
xp = libpointer('doublePtr', x);

Verify the contents of xp:
get(xp)
MATLAB displays:

Value: 15
DataType: 'doublePtr'

Now call the function and check the results:

calllib('shrlibsample', 'multDoubleRef', xp);
xp.Value

MATLAB displays:

ans =
75

The object xp is a handle object. All copies of this handle refer to the same
underlying object and any operations you perform on a handle object affect all
copies of that object. However, object xp is not a C language pointer. Although
1t points to X, it does not contain the address of x. The function modifies the
Value property of xp but does not modify the value in the underlying objectx.
The original value of x is unchanged. Type:

X

MATLAB displays:

X:
15

2-25

2 MATLAB® Interface to Shared Libraries

2-26

Reading Function Return Values

In the previous example, the result of the function called from MATLAB could
be obtained by examining the modified input pointer. But this function also
returns data in its output arguments that may be useful.

To see the MATLAB prototype for multDoubleRef, type:

libfunctions shrlibsample -full

Look for the entry:

[lib.pointer, doublePtr] multDoubleRef(doublePtr)

The function returns two outputs — a libpointer object and the Value
property of the input argument:

Run the example again:

X = 15;
xp = libpointer('doublePtr', x);

Check the output values:

[xobj, xval] = calllib('shrlibsample', 'multDoubleRef', xp)

MATLAB displays:

xobj =
lib.pointer
xval =
75

Like the input argument xp, xobj is also a libpointer object. You can
examine this output, but first you need to initialize its type and size because
the function does not define these properties. Use the setdatatype function
defined by class 1ib.pointer to set the data type to doublePtr and the size
to 1-by-1. Once initialized, you can examine outputs by typing:

setdatatype(xobj, 'doublePtr', 1, 1)
get(xobj)

Working with Pointers

MATLAB displays:

ans =
Value: 75
DataType: 'doublePtr'

The second output of multDoubleRef, xval, is a copy of the Value property
of input xp.

Creating a Pointer by Offsetting from an Existing libpointer
You can use the plus operator (+) to create a new pointer that is offset from
an existing pointer by a scalar numeric value. For example, suppose you
create a libpointer to the vector x:

x = 1:10;
xp = libpointer('doublePtr',x);
xp.Value

MATLAB displays:

ans =
1 2 3 4 5 6 7 8 9 10

Use the plus operator to create a new libpointer that is offset from xp:

Xp2 = xpt4;
xp2.Value

MATLAB displays:

ans =
5 6 7 8 9 10

Note The new pointer (xp2 in this example) is valid only as long as the
original pointer, xp, exists.

2-27

2 MATLAB® Interface to Shared Libraries

2-28

Creating a Pointer to a Structure

If a function has an input argument that is a pointer to a structure, you can
either pass the structure itself, or pass a pointer to the structure. Creating a
pointer to a structure is similar to creating a pointer to a primitive type.

The addStructByRef function in the shrlibsample library takes a pointer to
a structure of type c_struct. The output argument is the sum of all fields
in the structure. The function also modifies the fields of the input structure.
Here is the C function:

EXPORTED_FUNCTION double addStructByRef(struct c_struct *st) {
double t = st->p1 + st->p2 + st->p3;
st->p1 = 5.5;
st->p2 = 1234;
st->p3 = 12345678;
return t;

Passing the Structure ltself

Although the input to the addStructByRef function is a pointer to a structure,
you can pass the structure itself and let MATLAB make the conversion to a
pointer.

In the following example, create the structure sm and call addStructByRef:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
x = calllib('shrlibsample', 'addStructByRef', sm)

MATLAB displays:

X =
1177

However, MATLAB does not modify the contents of sm, since it is not a
pointer. Type:

sm

Working with Pointers

MATLAB displays:

sm =
pil: 476
p2: -299
p3: 1000

Passing a Structure Pointer

The following example passes a pointer to the structure. First, create the
libpointer object:

sp = libpointer('c_struct', sm);
sp.Value

The libpointer, sp, has the same values as the structure sm:

ans =
p1: 476
p2: -299
p3: 1000

Pass the libpointer to the function:

calllib('shrlibsample', 'addStructByRef', sp)

MATLAB displays:

ans =
1177

In this case, the function modifies the structure fields. Type:

sp.Value

MATLAB displays the updated values:

ans =
p1: 5.5000
p2: 1234
p3: 12345678

2-29

2 MATLAB® Interface to Shared Libraries

Passing a Pointer to the First Element of an Array

In cases where a function defines an input argument that is a pointer to the
first element of a data array, MATLAB automatically passes an argument
that is a pointer of the correct type to the first element of data in the MATLAB
vector or matrix.

The following pseudo-code shows how to do this. Suppose you have a
function mySum in a library myLib. The signature of the C function is:

int mySum(int size, short* data);

The C variable data is an array of type short. The equivalent MATLAB
type is int16. You can pass any of the following MATLAB variables to this
function:

Data = 1:100;
shortData = inti16(Data); %equivalent to C short type
1p = libpointer('int16Ptr',Data); %libpointer object

The following pseudo-code statements are equivalent:

summed_data = calllib('myLib', 'mySum',100,Data);
summed_data calllib('myLib"', 'mySum',100,shortData);
summed_data calllib('myLib', "'mySum',100,1p);

The length of the data vector must be equal to the specified size. For
example:

% sum last 50 elements
summed_data = calllib('myLib', 'mySum',50,Data(51:100));

Putting a String into a Void Pointer

C represents characters as eight-bit integers. To use a MATLAB string as an
input argument, you must convert the string to the proper type and create a
voidPtr. To do this, use the 1libpointer function as follows:

str = 'string variable';
vp = libpointer('voidPtr',[int8(str) 0]);

The syntax [int8(str) 0] creates the null-terminated string required by the
C function. To read the string, and verify the pointer type, enter:

2-30

Working with Pointers

char(vp.VvValue)
vp.DataType

MATLAB displays:

ans =

string variable
ans =

voidPtr

You can call a function that takes a voidPtr to a string as an input argument
using the following syntax because MATLAB automatically converts an
argument passed by value into an argument passed by reference when the
external function prototype defines the argument as a pointer:

func_name ([int8(str) 0])

Note that while MATLAB converts the argument from a value to a pointer, it
must be of the correct type.

Passing an Array of Strings

The getList0fStrings function from the shrlibsample library returns a
char ** which you can think of as a pointer to an array of strings. The
function signature is:

lib.pointer getListOfStrings

Here is the getList0fStrings function in C:

EXPORTED_FUNCTION const char ** getListOfStrings(void)
{

static const char *strings[5];

strings[0]="String 1";

strings[1]="String Two";

strings[2]=""; /* empty string */

strings[3]="Last string";

strings[4]=NULL;

return strings;

2-31

2 MATLAB® Interface to Shared Libraries

2-32

To read this array, type:
ptr = calllib('shrlibsample', 'getListOfStrings');

MATLAB creates a libpointer object ptr of type stringPtrPtr. This object
points to the first string. To display the string, use the Value property:

ptr.value

To view the other strings, you need to increment the pointer. For example,
type:

for index 0:3
tempPtr = ptr+index;
tempPtr.Value

end

MATLAB displays:

ans =

'String 1'
ans =

'String Two'
ans =

{""}
ans =

Last string'

Example — Creating a Cell Array from a libpointer

The getListOfStrings function returns a 1ib.pointer which you can use to
create a MATLAB cell array of strings.

To call the function, type:

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot , 'extern', ‘'examples', 'shrlib'));
loadlibrary shrlibsample shrlibsample.h;

end

ptr = calllib('shrlibsample', 'getListOfStrings');

Working with Pointers

Create indexing variables to iterate through the arrays. Use ptrindex for the
strings returned by the function and index for the MATLAB array:

ptrindex = ptr;
index=1;

Create the cell array of strings, m1StringArray:

while ischar(ptrindex.value{1}) %stop at end of 1list (NULL)
mlStringArray{index} = ptrindex.value{1};
ptrindex = ptrindex+1; %increment pointer
index = index+1; %increment array index

end

To view the contents of the cell array, type:
mlStringArray
MATLAB displays:

mlStringArray =
'String 1 'String Two'

' ‘Last string'

Memory Allocation for an External Library

In general, MATLAB passes a valid memory address each time you pass a
variable to a library function. You should use a libpointer object in cases
where the library stores the pointer and accesses the buffer over a period of
time. In these cases, you need to ensure that MATLAB has control over the
lifetime of the buffer and to prevent copies of the data from being made. The
following pseudo-code is an example of asynchronous data acquisition that
shows how to use a libpointer in this situation.

Suppose an external library myLib has the following functions:

AcquireData(int points, short *buffer)
IsAquisitionDone(void)

where buffer is declared as follows:
short buffer[99]

First, create a libpointer to an array of 99 points:

2-33

2 MATLAB® Interface to Shared Libraries

2-34

BufferSize = 99;
pBuffer = libpointer('int16Ptr',zeros(BufferSize,1));

Then, begin acquiring data and wait in a loop until it is done:

calllib('myLib', "AcquireData,BufferSize,pbuffer);

while (~calllib('myLib','IsAcquisitionDone')
pause(0.1)

end

The following statement reads the data in the buffer:

result = pBuffer.Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

Multilevel Pointers

Multilevel pointers are arguments that have more than one level of
referencing. A multilevel pointer type in MATLAB uses the suffix PtrPtr.
For example, use doublePtrPtr for the C argument double **.

When calling a function that takes a multilevel pointer argument, use a
libpointer object and let MATLAB convert it to the multilevel pointer. For
example, the allocateStruct function in the shrlibsample library takes a
c_structPtrPtr argument. The signature for this function is:

c_structPtrPtr allocateStruct(c_structPtrPtr)

Here is the C function:

EXPORTED_FUNCTION void allocateStruct(struct c_struct **val)
{
val=(struct c_struct) malloc(sizeof(struct c_struct));
(*val)->p1 = 12.4;
(*val)->p2 222;
(*val)->p3 333333;

}

Create a libpointer object of type c_structPtr and pass it to the function:

Working with Pointers

sp = libpointer('c_structPtr');
calllib('shrlibsample', 'allocateStruct', sp)
get(sp)

MATLAB displays:

ans =
Value: [1x1 struct]
DataType: 'c_structPtr'
Type:
sp.Value

MATLAB displays:

ans =
p1: 12.4000
p2: 222
p3: 333333

When you use allocateStruct, you must free memory using the command:

calllib('shrlibsample', 'deallocateStruct', sp)

Returning an Array of Strings

Suppose you have a library, myLib, with a function, acquireString, that
reads an array of strings. The function signature is:

char** acquireString(void)

The following pseudo-code shows how to manipulate the return value, an
array of pointers to strings.

ptr = calllib(myLib, 'acquireString');

MATLAB creates a libpointer object ptr of type stringPtrPtr. This object
points to the first string. To view other strings, you need to increment the
pointer. For example, to display the first 3 strings, type:

for index = 0:2

2-35

2 MATLAB® Interface to Shared Libraries

tempPtr = ptr+index;
tempPtr.value
end

MATLAB displays:

ans =
'str1’

ans =
'str2’

ans =
'str3'

2-36

Working with Structures

Working with Structures

In this section...

“Structure Argument Requirements” on page 2-37
“Working with Structures Examples” on page 2-37
“Finding Structure Field Names” on page 2-38

“Example of Passing a MATLAB Structure” on page 2-39
“Passing a libstruct Object” on page 2-39

“Using the Structure as an Object” on page 2-42

Structure Argument Requirements
When you pass a MATLAB structure to an external library function:

e Every MATLAB field name must match a field name in the library
structure definition. Field names are case sensitive.

e MATLAB structures cannot contain fields that are not in the library
structure definition.

e [f a MATLAB structure contains fewer fields than defined in the library
structure, MATLAB sets undefined fields to zero.

You do not need to match the data types of numeric fields. The calllib
function converts to the correct numeric type.

Working with Structures Examples
[instructions for opening shrlibsample code]
Examples in this topic are:

¢ “Example of Finding Structure Field Names” on page 2-38
¢ “Example of Passing a MATLAB Structure” on page 2-39
¢ “Example of Passing a libstruct Object” on page 2-41

¢ “Using the Structure as an Object” on page 2-42

2-37

2 MATLAB® Interface to Shared Libraries

2-38

Finding Structure Field Names

To determine the name and data type of structure fields, you can:

® Consult the library documentation.
¢ Look at the structure definition in the library header file.

e Use the libstruct function, as described in the following example.

Example of Finding Structure Field Names

You can determine the field names of an externally defined structure using
the 1ibstruct function. For example, look at the addStructFields function
in the shrlibsample library. It has the signature:

double addStructFields (c_struct)

Create a libstruct object:
s = libstruct('c_struct');
To get the names of the fields, type:
get(s)

MATLAB displays the field names and their values:

pi: 0
p2: 0
p3: 0

To set the field values, type:
s.pl = 476; s.p2 = -299; s.p3 = 1000;

calllib('shrlibsample', 'addStructFields',s);
get(s)

MATLAB displays:

pi1: 476
p2: -299
p3: 1000

Working with Structures

Example of Passing a MATLAB Structure

The following example passes a MATLAB structure to the addStructFields
function in the shrlibsample library. The library defines the following:

struct c_struct {
double pi;
short p2;
long p3;

b

double addStructFields(struct c_struct st) {
double t = st.p1 + st.p2 + st.p3;
return t;

}

To load the library, type:

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot , 'extern', 'examples', 'shrlib'));
loadlibrary shrlibsample shrlibsample.h;

end

Create a structure, sm, with three fields of type double:
sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

The calllib function converts the fields to the double, short, and long data
types defined in ¢_struct:

calllib('shrlibsample', 'addStructFields', sm)

MATLAB displays:

ans =
1177

Passing a libstruct Object

When working with small structures, you can let MATLAB convert the
structure being passed to the library definition for that structure type, as
described in “Structure Argument Requirements” on page 2-37. However,
when working with repeated calls that pass one or more large structures, it

2-39

2 MATLAB® Interface to Shared Libraries

may be to your advantage to convert the structure manually before making
any calls to external functions. In this way, you save processing time by
converting the structure data only once at the start rather than at each
function call. You can also save memory if the fields of the converted structure
take up less space than the original MATLAB structure. You do this by
creating a libstruct object, as described in the following topics:

* “Preconverting a MATLAB Structure with libstruct” on page 2-40
e “Creating an Empty libstruct Object” on page 2-41
® “libstruct Requirements for Structures” on page 2-41

e “Example of Passing a libstruct Object” on page 2-41

Preconverting a MATLAB Structure with libstruct

Use the libstruct function to convert a MATLAB structure to a C-style
structure. The syntax for libstruct is:

s = libstruct('structtype', mlstruct)

The variable s is a libstruct object. Although it is an object, it behaves like
a MATLAB structure. The fields of the object are derived from the external
structure type specified by structtype.

For example, to convert a MATLAB structure, sm, to a libstruct object,
sc, type:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
sc = libstruct('c_struct', sm);

All of fields in the original structure sm are of type double. The object sc
has fields that match the c_struct structure type. These fields are double,
short, and long. Type:

get(sc)

MATLAB displays:

pi1: 476
p2: -299
p3: 1000

2-40

Working with Structures

Note You can only use the 1ibstruct function on scalar structures.

Creating an Empty libstruct Object

To create an empty libstruct object, call 1ibstruct with only the
structtype argument. For example:

sci = libstruct('c_struct')
get(sci)

MATLAB displays the initialized values:

pi: O
p2: 0
p3: 0

libstruct Requirements for Structures

When converting a MATLAB structure to a 1libstruct object, the
structure must adhere to the requirements listed in “Structure Argument
Requirements” on page 2-37.

Example of Passing a libstruct Object

Compare the following example with the “Example of Passing a MATLAB
Structure” on page 2-39. Convert structure sm to type c_struct:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

sc = libstruct('c_struct', sm);
get(sc)

MATLAB displays:

pil: 476
p2: -299
p3: 1000

2-41

2 MATLAB® Interface to Shared Libraries

2-42

Now call the function with the 1ibstruct object sc:
calllib('shrlibsample', 'addStructFields', sc)
MATLAB displays:

ans =
1177

Note When passing manually converted structures, the structure passed
must be of the same type as that used by the external function. For example,
you cannot pass a structure of type records to a function that expects type
c_struct.

Using the Structure as an Object

® “Determining the Size of a libstruct Object” on page 2-43
® “Accessing Fields of a libstruct Object” on page 2-43

A libstruct object is not a MATLAB structure. It is an instance of a class
called 1ib.c_struct. Type:

whos

MATLAB displays (in part):

Name Size Bytes Class
sC 1x1 lib.c_struct
sm 1x1 396 struct array

Working with Structures

Determining the Size of a libstruct Object

You can use the 1lib.c_struct class method structsize to obtain the size
of a 1ibstruct object:

sc.structsize

MATLAB displays:

ans =
16

Accessing Fields of a libstruct Object

The fields of this structure are properties of the 1ib.c_struct class. You
can read and modify any of these fields using the MATLAB object-oriented
functions, set and get:

sc = libstruct('c_struct');
set(sc, 'pt1', 100, 'p2', 150, 'p3', 200);
get(sc)

MATLAB displays:

pi: 100
p2: 150
p3: 200

You can read and modify the fields by treating them like MATLAB structure
fields:

sc.pl = 23;
sc.pl

MATLAB displays:

ans =
23

2-43

2 MATLAB® Interface to Shared Libraries

2-44

Calling C/C++ and Fortran
Programs from MATLAB

Command Line

¢ “Introducing MEX-Files” on page 3-2

¢ “Using MEX-Files to Call C/C++ and Fortran Programs” on page 3-5

e “MATLAB Data” on page 3-18

¢ “Building MEX-Files” on page 3-23

e “Troubleshooting MEX-Files” on page 3-35

¢ “Custom Building MEX-Files” on page 3-49

e “Calling LAPACK and BLAS Functions from MEX-Files” on page 3-65

¢ “Running MEX-Files with .DLL File Extensions on Windows 32-bit
Platforms” on page 3-75

e “Upgrading MEX-Files to Use 64-Bit API” on page 3-76

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

Introducing MEX-Files

In this section...

“What Are MEX-Files?” on page 3-2

“Definition of MEX” on page 3-3

“MEX and MX Matrix Libraries” on page 3-3
“Introduction to Source MEX-Files” on page 3-3

“Overview of Creating a Binary MEX-File” on page 3-4

“Configuring Your Environment” on page 3-4

What Are MEX-Files?

You can call your own C, C++, or Fortran subroutines from the MATLAB
command line as if they were built-in functions. These programs, called

binary MEX-files, are dynamically-linked subroutines that the MATLAB
interpreter loads and executes. MEX stands for “MATLAB executable.”

Note MATLAB supports MEX-files created in C++, with some limitations.
For more information, see “Creating C++ MEX-Files” on page 4-9.

MEX-files have several applications:

¢ (Calling large pre-existing C/C++ and Fortran programs from MATLAB
without rewriting them as MATLAB functions

® Replacing performance-critical routines with C/C++ implementations

MATLAB also provides an interface to shared libraries, described in “Calling
Functions in Shared Libraries” on page 2-2. You can use the loadlibrary
and calllib commands to call functions in such libraries. MEX-files are not
appropriate for all applications. MATLAB is a high-productivity environment
whose specialty is eliminating time-consuming, low-level programming in
compiled languages like C, C++, or Fortran. In general, do your programming
in MATLAB. Do not use MEX-files unless your application requires it.

Introducing MEX-Files

Definition of MEX

The term mex has different meanings, as shown in the following table:

MEX Term Definition

source MEX-file C, C++, or Fortran source code file.

binary MEX-file Dynamically-linked subroutine executed in the
MATLAB environment.

MEX function MATLAB C/C++ and Fortran API Reference library to

library perform operations in the MATLAB environment.

mex build script MATLAB function to create a binary file from a source
file.

MEX and MX Matrix Libraries

e MX Matrix Library — Functions for use in programs to pass mxArray, the
type MATLAB uses to store arrays, to and from MEX-files. For a list of
these functions, see “MX Matrix Library”. For information about mxArray,
see “MATLAB Data” on page 3-18. For examples using these functions, see
matlabroot/extern/examples/mx.

e MEX Library — Functions to perform operations in the MATLAB
environment. For a list of these functions, see “MEX Library”. For
examples using these functions, see matlabroot/extern/examples/mex.

Introduction to Source MEX-Files

This section provides general information about source MEX-files and how to
get started. For a C language example, see “Creating a Source MEX-File” on
page 3-5. For information about using specific MATLAB C/C++ and Fortran
API Reference library functions, see “Workflow of a MEX-File” on page 3-10.

You can create MEX-files in C, C++, or Fortran. For clarity, this topic is in
the context of a C language program. For language-specific instructions, see
Chapter 4, “Creating C/C++ Language MEX-Files” and Chapter 5, “Creating
Fortran MEX-Files”.

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

To create source MEX-files you need the tools and knowledge to modify
and build source code. In particular, you need a compiler supported by
MATLAB. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

A computational routine is the source code that performs functionality you
want to use with MATLAB. For example, if you created a standalone C
program for this functionality, it would have a main() function. MATLAB
communicates with your MEX-file using a gateway routine. The MATLAB
function that creates the gateway routine is mexfunction. You use
mexfunction instead of main() in your source file.

Overview of Creating a Binary MEX-File
To create a binary MEX-file:

® Assemble your functions and the MATLAB API functions into one or more
C/C++ sourece files.

* Write a gateway function in one of your C/C++ source files.

e Use the MATLAB mex function, called a build script, to build a binary
MEX-file.

e Use your binary MEX-file like any MATLAB function.

Configuring Your Environment

Before you start building binary MEX-files, select your default compiler and
test an existing source MEX-file. For more information about compilers, and
for step-by-step instructions for compiling sample programs, see “Building
MEX-Files” on page 3-23.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Using MEX-Files to Call C/C++ and Fortran Programs

Using MEX-Files to Call C/C++ and Fortran Programs

In this section...

“Creating a Source MEX-File” on page 3-5
“Workflow of a MEX-File” on page 3-10

“Using Binary MEX-Files” on page 3-15

“Binary MEX-File Placement” on page 3-16
“Using Help Files with MEX-Files” on page 3-16

“Workspace for MEX-File Functions” on page 3-17

Creating a Source MEX-File

Suppose you have some C code, called arrayProduct, that multiplies an

n-dimensional array y by a scalar value x and returns the results in array z.

It might look something like the following:

void arrayProduct(double x, double *y, double *z, int n)

{
int i;
for (i=0; i<n; i++) {
z[i] = x * y[i];
}
}

If x =5 and y is an array with values 1.5, 2, and 9, then calling:
arrayProduct(x,y,z,n)
creates an array z with the values 7.5, 10, and 45.

The following steps show how to call this function in MATLAB, using a
MATLAB matrix, by creating the MEX-file arrayProduct.

1 “Create Your MEX Source File” on page 3-6

2 “Create a Gateway Routine” on page 3-6

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3 “Use Preprocessor Macros” on page 3-7

4 “Verify Input and Output Parameters” on page 3-7
5 “Read Input Data” on page 3-8

6 “Prepare Output Data” on page 3-9

7 “Perform Calculation” on page 3-9

8 “Build the Binary MEX-File” on page 3-9

9 “Test the MEX-File” on page 3-9

Create Your MEX Source File

Open MATLAB Editor and copy your code into a new file. Save the file on
your MATLAB path, for example, in c:\work, and name it arrayProduct.c.
This file is your computational routine, and the name of your MEX-file is
arrayProduct.

Copy and paste the code in the following examples to create the final
MEX-file. Alternatively, use the example arrayProduct.c, located in
matlabroot/extern/examples/mex. To see the contents of arrayProduct.c,
open the file in MATLAB Editor.

Create a Gateway Routine
At the beginning of the file, add the C/C++ header file:

#include "mex.h"

Add comments:

/*

* arrayProduct.c

* Multiplies an input scalar times a 1xN matrix
* and outputs a 1xN matrix

*

* This is a MEX-file for MATLAB.
*/

Using MEX-Files to Call C/C++ and Fortran Programs

After the computational routine, add the gateway routine mexFunction:

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{

/* variable declarations here */

/* code here */

}

Use Preprocessor Macros

The MX Matrix Library and MEX Library functions use MATLAB
preprocessor macros for cross-platform flexibility.

Edit your computational routine to use mwSize for mxArray size n and index i.

void arrayProduct(double x, double *y, double *z, mwSize n)

{

mwSize 1i;

for (i=0; i<nj; i++) {
z[i] = x * y[i];
}
}

Verify Input and Output Parameters

In this example, there are two input arguments (a matrix and a scalar) and
one output argument (the product). To check that the number of input
arguments nrhs is two and the number of output arguments nlhs is one, put
the following code inside the mexFunction routine:

/* check for proper number of arguments */
if(nrhs!=2) {
mexErrMsgIdAndTxt ("MyToolbox:arrayProduct:nrhs",
"Two inputs required.");

3-7

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

if(nlhs!=1) {
mexErrMsgIdAndTxt ("MyToolbox:arrayProduct:nlhs",
"One output required.");

The following code validates the input values:

/* make sure the first input argument is scalar */
if (!mxIsDouble(prhs[0]) ||
mxIsComplex(prhs[0]) ||
mxGetNumberOfElements (prhs[0])!=1) {
mexXErrMsgIdAndTxt ("MyToolbox:arrayProduct:notScalar",
"Input multiplier must be a scalar.");

}

The second input argument must be a row vector.

/* check that number of rows in second input argument is 1 */
if (mxGetM(prhs[1])!=1) {
mexErrMsgIdAndTxt ("MyToolbox:arrayProduct:notRowVector",
"Input must be a row vector.");

Read Input Data

Put the following declaration statements at the beginning of your

mexFunction:
double multiplier; /* input scalar */
double *inMatrix; /* 1xN input matrix */
mwSize ncols; /* size of matrix */

Add these statements to the code section of mexFunction:

/* get the value of the scalar input */
multiplier = mxGetScalar(prhs[0]);

/* create a pointer to the real data in the input matrix */
inMatrix = mxGetPr(prhs[1]);

3-8

Using MEX-Files to Call C/C++ and Fortran Programs

/* get dimensions of the input matrix */
ncols = mxGetN(prhs[1]);

Prepare Output Data
Put the following declaration statement after your input variable declarations:

double *outMatrix; /* output matrix */

Add these statements to the code section of mexFunction:

/* create the output matrix */
plhs[0] = mxCreateDoubleMatrix(1,ncols,mxREAL);

/* get a pointer to the real data in the output matrix */
outMatrix = mxGetPr(plhs[0]);

Perform Calculation
The following statement executes your function:

/* call the computational routine */
arrayProduct(multiplier,inMatrix,outMatrix,ncols);

Build the Binary MEX-File

Your source file should look something like arrayProduct.c, located in
matlabroot/extern/examples/mex. To see the contents of arrayProduct.c,
open the file in MATLAB Editor.

To build the binary MEX-file, at the MATLAB command prompt, type:

mex arrayProduct.c

Test the MEX-File
Type:

s = 5;
A= [1.5, 2, 9];
B arrayProduct(s,A)

3-9

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-10

MATLAB displays:

B =
7.5000 10.0000 45.0000

To test error conditions, type:

arrayProduct

MATLAB displays:

??? Error using ==> arrayProduct
Two inputs required.

Workflow of a MEX-File

This section discusses MATLAB API functions for handling the basic
workflow of a MEX-file and uses C language code snippets for illustration.
For an example of a complete C program, see “Creating a Source MEX-File”
on page 3-5. Unless otherwise specified, in this section the term "MEX-file”
refers to a source file.

Some basic programming tasks are:

® “Creating a Gateway Function” on page 3-11

¢ “Declaring Data Structures” on page 3-11

® “Managing Input and Output Parameters” on page 3-11
® “Validating Inputs” on page 3-12

e “Allocating and Freeing Memory” on page 3-12

e “Manipulating Data” on page 3-13

¢ “Displaying Messages to the User” on page 3-14

¢ “Handling Errors” on page 3-14

¢ “Cleaning Up and Exiting” on page 3-15

Using MEX-Files to Call C/C++ and Fortran Programs

Creating a Gateway Function

Use the mexfunction function in your C source file as the interface between
your code and MATLAB. Place this function after your computational routine
and any other functions in your source.

The signature for mexfunction is:

void
mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]);

Declaring Data Structures

Use type mxArray to handle MATLAB arrays. The following statement
declares an mxArray named myData:

mxArray *myData;

To define the values of myData, use one of the mxCreate* functions.
Some useful array creation routines are mxCreateNumericArray,
mxCreateCellArray, and mxCreateCharArray. For example, the following
statement allocates an m-by-1 floating-point mxArray initialized to O:

myData = mxCreateDoubleMatrix(m, 1, mxREAL);

C/C++ programmers should note that data in a MATLAB array is in
column-major order. (For an illustration, see “Data Storage” on page 3-18.)
Use the MATLAB mxGet* array access routines, described in “Manipulating
Data” on page 3-13, to read data from an mxArray.

Managing Input and Output Parameters

MATLAB passes data to and from MEX-files in a highly regulated way,
described in “Required Parameters” on page 4-3.

Input parameters (found in the prhs array) are read-only; do not modify
them in your MEX-file. Changing data in an input parameter can produce

undesired side effects.

You also must take care when using an input parameter to create output
data or any data used locally in your MEX-file. This is because of the way

3-11

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-12

MATLAB handles MEX-file cleanup after processing. For an example, see the
troubleshooting topic “Incorrectly Constructing a Cell or Structure mxArray”
on page 3-45.

If you want to copy an input array into your local myData array, call
mxDuplicateArray to make of copy of the input array before using it. For
example:

mxArray *myData = mxCreateStructMatrix(1,1,nfields,fnames);
mxSetField(myData,0, "myFieldName" ,mxDuplicateArray(prhs[0]));

Validating Inputs

Good programming practice requires you to validate inputs to your function.
MATLAB provides mxIs* routines for this purpose. The mxIsClass function
1s a general-purpose way to test an mxArray.

For example, suppose your second input argument (identified by prhs[1])
must be a full matrix of real numbers. Use the following statements to check
this condition:

if (mxIsSparse(prhs[1]) ||
mxIsComplex(prhs[1]) ||
mxIsClass(prhs[1],"char")) {
mexErrMsgTxt ("input2 must be full matrix of real values.");

}

This example is not an exhaustive check. You can also test for structures, cell
arrays, function handles, and MATLAB objects.

Allocating and Freeing Memory

MATLAB performs cleanup of MEX-file variables, as described in “Automatic
Cleanup of Temporary Arrays” on page 4-41. However, MathWorks™
recommends that binary MEX-files destroy their own temporary arrays and
free dynamically allocated memory. It is more efficient to perform this
cleanup in the source MEX-file than to rely on the automatic mechanism.

MATLAB provides functions, such as mxMalloc and mxFree, to manage
memory. Use these functions instead of their standard C library counterparts

Using MEX-Files to Call C/C++ and Fortran Programs

because they let MATLAB manage memory and perform initialization and
cleanup.

For information on how MATLAB allocates memory for arrays and
data structures, see “Memory Allocation” in the MATLAB Programming
Fundamentals documentation.

Allocate memory for variables that your MEX-file uses. If the first input to
your function (prhs[0]) is a string, in order to manipulate the string, create a
buffer buf of size buflen. The following statements declare these variables:

char *buf;
int buflen;

The size of the buffer is dependent on the number of dimensions of your
input array and the size of the data in the array. This statement calculates
the size of buflen:

buflen = mxGetN(prhs[0])*sizeof (mxChar)+1;

Now we can allocate memory for buf:

buf = mxMalloc(buflen);

At the end of the program, if you do not return buf as a plhs output
parameter (as described in “Cleaning Up and Exiting” on page 3-15), then
free its memory as follows:

mxFree (buf);

Manipulating Data

The mxGet* array access routines get references to the data in an mxArray.
Use these routines to modify data in your MEX-file. Each function provides
access to specific information in the mxArray. Some useful functions are
mxGetData, mxGetPr, mxGetM, and mxGetString. Many of these functions have
corresponding mxSet* routines to allow you to modify values in the array.

The following statements read the input string prhs[0] into a C-style string
buf:

char *buf;

3-13

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

int buflen;

int status;

buflen = mxGetN(prhs[0])*sizeof (mxChar)+1;
buf = mxMalloc(buflen);

status = mxGetString(prhs[0], buf, buflen);

Displaying Messages to the User

Use the mexPrintf function, as you would a C/C++ printf function, to print
a string in the MATLAB Command Window. Use the mexErrMsgIdAndTxt
and mexWarnMsgIdAndTxt functions to print error and warning information in
the Command Window.

For example, using the variables declared in the previous example, you can
print the input string prhs[0] as follows:

if (mxGetString(prhs[0], buf, buflen) == 0) {
mexPrintf ("The input string is: %s\n", buf);

}

Handling Errors

The mexErrMsgIdAndTxt function prints error information and terminates
your binary MEX-file. The mexWarnMsgIdAndTxt function prints information,
but does not terminate the MEX-file. For example:

if (mxIsChar(prhs[0])) {
if (mxGetString(prhs[0], buf, buflen) == 0) {
mexPrintf ("The input string is: %s\n", buf);

}
else {
mexXErrMsgIdAndTxt ("MyProg:ConvertString",
"Could not convert string data.");
// exit MEX-file
}
}
else {

mexWarnMsgIdAndTxt ("MyProg:InputString",
“Input should be a string to print properly.");

3-14

Using MEX-Files to Call C/C++ and Fortran Programs

}

// continue with processing

Cleaning Up and Exiting

As described in “Allocating and Freeing Memory” on page 3-12, destroy
any temporary arrays and free any dynamically allocated memory, except
if such an mxArray is returned in the output argument list, returned by
mexGetVariablePtr, or used to create a structure. Also, never delete input
arguments.

Use mxFree to free memory allocated by the mxCalloc, mxMalloc, or
mxRealloc functions. Use mxDestroyArray to free memory allocated by the
mxCreate* functions.

Using Binary MEX-Files

Binary MEX-files are subroutines produced from C/C++ or Fortran source
code. They behave just like MATLAB scripts and built-in functions. While
scripts have a platform-independent extension .m, MATLAB identifies
MEX-files by platform-specific extensions. The following table lists the
platform-specific extensions for MEX-files.

Binary MEX-File Extensions

Platform Binary MEX-File Extension
Linux (32-bit) mexglx

Linux (64-bit) mexa64

Apple Macintosh mexmaci

(32-bit)

Macintosh (64-bit) mexmaci64

Microsoft Windows mexw32

(32-bit)

Windows (64-bit) mexw64

3-15

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-16

You call MEX-files exactly as you call any MATLAB function. For example,
on a Windows platform, there is a binary MEX-file called histc.mexw32
(in the MATLAB toolbox folder matlabroot\toolbox\matlab\datafun)
that performs a histogram count. The file histc.m contains the help text
documentation. When you call histc from MATLAB, the dispatcher looks
through the list of folders on the MATLAB search path. It scans each
folder looking for the first occurrence of a file named histc with either the
corresponding file name extension from the table or .m. When it finds one,
it loads the file and executes it. Binary MEX-files take precedence over .m
files when like-named files exist in the same folder. However, help text
documentation still reads from the .m file.

You cannot use a binary MEX-file on a platform if you compiled it on a
different platform. Recompile the source code on the platform for which you
want to use the MEX-file.

Binary MEX-File Placement

Put your MEX-files in a folder on the MATLAB path. Alternatively, run
MATLAB from the folder containing the MEX-file. MATLAB runs functions
in the current working folder before functions on the path.

Use path to see the current folders on your path. You can add new folders to
the path either by using the addpath function, or by selecting File > SetPath
to edit the path.

If you use a Windows operating system and your binary MEX-files are on a
network drive, be aware that file servers do not always report folder and file
changes correctly. If you change a MEX-file on a network drive and find that
MATLAB does not use the latest changes, you can force MATLAB to look for
the correct version of the file by changing folders away from and then back to
the folder containing the file.

Using Help Files with MEX-Files

You can document the behavior of your MEX-files by writing a MATLAB
script containing comment lines. For information, see “Help Text” in

the Programming Fundamentals documentation. The help command
automatically finds and displays the appropriate text when help is requested

Using MEX-Files to Call C/C++ and Fortran Programs

and the interpreter finds and executes the corresponding MEX-file when
the function is invoked.

Workspace for MEX-File Functions

Unlike MATLAB functions, MEX-file functions (binary MEX-files) do not
have their own variable workspace. MEX-file functions operate in the caller’s
workspace. mexEvalString evaluates the string in the caller’s workspace. In
addition, you can use the mexGetVariable and mexPutVariable routines to
get and put variables into the caller’s workspace.

3-17

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-18

MATLAB Data

In this section...

“The MATLAB Array” on page 3-18
“Data Storage” on page 3-18
“MATLAB Types” on page 3-19
“Sparse Matrices” on page 3-21
“Using Data Types” on page 3-21

The MATLAB Array

The MATLAB language works with only a single object type: the MATLAB
array. All MATLAB variables, including scalars, vectors, matrices, strings,
cell arrays, structures, and objects, are stored as MATLAB arrays. In C/C++,
the MATLAB array is declared to be of type mxArray. The mxArray structure
contains, among other things:

Its type

Its dimensions

The data associated with this array

If numeric, whether the variable is real or complex
If sparse, its indices and nonzero maximum elements

If a structure or object, the number of fields and field names

Data Storage

All MATLAB data is stored columnwise, which is how Fortran stores matrices.
MATLAB uses this convention because it was originally written in Fortran.
For example, given the matrix:

a=['house'; 'floor'; 'porch']
a:

house
floor
porch

MATLAB® Data

its dimensions are:
size(a)

ans =
3 5

and its data is stored as

Lnfffelofifefulofrfs]o]cfefr]n]

MATLAB Types

Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The
data is stored as two vectors of double-precision numbers—one contains the
real data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A real-only, double-precision matrix is one whose pi is NULL.

Numeric Matrices

MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed
and unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

Logical Matrices

The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical 1 or logical 0 to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
1 value.

3-19

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-20

MATLAB Strings

MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Unlike C,
MATLAB strings are not null terminated.

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to as a cell. This allows MATLAB arrays of different types to be stored
together. Cell arrays are stored in a similar manner to numeric matrices,
except the data portion contains a single vector of pointers to mxArrays.
Members of this vector are called cells. Each cell can be of any supported
data type, even another cell array.

Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Objects

Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object 1s a structure that contains storage for an additional class name that
identifies the name of the object.

Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Empty Arrays

MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal O and pr is NULL, is an empty array.

MATLAB® Data

Sparse Matrices

Sparse matrices have a different storage convention from that of full matrices
in MATLAB. The parameters pr and pi are still arrays of double-precision
numbers, but these arrays contain only nonzero data elements. There are
three additional parameters: nzmax, ir, and jc.

® nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

® ir points to an integer array of length nzmax containing the row indices of
the corresponding elements in pr and pi.

® jc points to an integer array of length n+1, where n is the number of
columns in the sparse matrix. The jc array contains column index
information. If the jth column of the sparse matrix has any nonzero
elements, jc[j] is the index in ir and pr (and pi if it exists) of the first
nonzero element in the jth column, and jc[j+1] - 1 is the index of the
last nonzero element in that column. For the jth column of the sparse
matrix, jc[j] is the total number of nonzero elements in all preceding
columns. The last element of the jc array, jc[n], is equal to nnz, the
number of nonzero elements in the entire sparse matrix. If nnz is less
than nzmax, more nonzero entries can be inserted into the array without
allocating additional storage.

Using Data Types

You can write source MEX-files, MAT-file applications, and engine
applications in C/C++ that accept any data type supported by MATLAB. In
Fortran, only the creation of double-precision n-by-m arrays and strings are
supported. You use binary C/C++ and Fortran MEX-files like MATLAB

functions.

Caution MATLAB does not check the validity of MATLAB data structures
created in C/C++ or Fortran using one of the MX Matrix Library create
functions (for example, mxCreateStructArray). Using invalid syntax to
create a MATLAB data structure can result in unexpected behavior in your
C/C++ or Fortran program.

3-21

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-22

The explore Example

There is an example source MEX-file included with MATLAB, called
explore.c, that identifies the data type of an input variable. The source code
for this example is in matlabroot/extern/examples/mex, where matlabroot
represents the top-level folder where MATLAB is installed on your system.

Note In platform-independent discussions that refer to folder paths, this book
uses the UNIX convention. For example, a general reference to the mex folder
is matlabroot/extern/examples/mex.

For example, typing:

cd([matlabroot '/extern/examples/mex']);
X = 2;
explore(x);

produces this result:

Name: prhs[0]
Dimensions: 1x1
Class Name: double

explore accepts any data type. Try using explore with these examples:

explore([1 2 3 4 5])

explore 1 2 3 4 5

explore({1 2 3 4 5})

explore(int8([1 2 3 4 5]))

explore {1 2 3 4 5}

explore(sparse(eye(5)))

explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(1, 2, 3, 4, 5)

Building MEX-Files

Building MEX-Files

In this section...
“What You Need to Build MEX-Files” on page 3-23

“Selecting a Compiler on Windows Platforms” on page 3-23

“Selecting a Compiler on UNIX Platforms” on page 3-29
“Linking Multiple Files” on page 3-32

“Overview of Building the timestwo MEX-File” on page 3-33

What You Need to Build MEX-Files

You need a compiler and the mex function to build MEX-files. MATLAB
software supports many compilers and provides computer configuration
files, called options files, designed specifically for these compilers. For an
up-to-date list of supported compilers, see the Supported and Compatible
Compilers Web page.

On 32-bit Microsoft Windows platforms, MATLAB provides a C compiler, Lcc.
To view Help on using the Lcc compiler, type:

winopen(fullfile(matlabroot, ‘'\sys\lcc\bin\wedit.hlp'))

If you have multiple compilers installed on your system, you can choose which
compiler to use, as described in “Selecting a Compiler on Windows Platforms”
on page 3-23 or “Selecting a Compiler on UNIX Platforms” on page 3-29.

To help you configure your system using a sample MEX-file, see “Overview
of Building the timestwo MEX-File” on page 3-33.

If you have difficulty creating MEX-files, see “Creating a Source MEX-File” on
page 3-5, or refer to “Troubleshooting MEX-Files” on page 3-35.

Selecting a Compiler on Windows Platforms

A selected compiler configuration specifies the compiler and build options
MATLAB uses every time you invoke the mex build script. The compiler in this
configuration is the selected compiler. It is the program that compiles source

3-23

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

code into object code. A configuration is the set of programs and instructions
that builds source code into shared libraries and standalone executable files.

To select a configuration, use the mex -setup command. You can set or change
the configuration anytime, from either the MATLAB or the system command
prompt. After you choose a configuration, it becomes the default and you no
longer have to select one to compile MEX-files.

You can view information about the selected compiler configuration using the
mex.getCompilerConfigurations function.

You can change the compiler configuration for a single call to the mex script
using the -f switch, which specifies an options file. Subsequent calls to mex
continue to use the selected compiler configuration.

For more information about these topics, see:

e “Viewing Supported Windows Compilers” on page 3-24
e “Selecting a Windows Compiler Configuration” on page 3-25
® “Getting Windows Configuration Information” on page 3-27

e “Specifying a Windows Options File” on page 3-28

Viewing Supported Windows Compilers
To see the list of supported compilers on the Windows platform, type:

mex -setup

MATLAB displays the following dialog. The text has been formatted to fit
the page.

Note The list of compilers shown in your version of MATLAB might be
different from the list shown in this example. For an up-to-date list of
supported compilers, see the Supported and Compatible Compilers Web page.

Please choose your compiler for building external interface (MEX) files:

3-24

http://www.mathworks.com/support/compilers/current_release/

Building MEX-Files

Would you like mex to locate installed compilers [y]/n? N

Select a compiler:

[1] Intel C++ 9.1 (with Microsoft Visual C++ 2005 linker)

[2] Intel Visual Fortran 10.1 (with Microsoft Visual C++ 2005 linker)
[3] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker)
[4] Lcc-win32 C 2.4.1

[5] Microsoft Visual C++ 6.0

[6] Microsoft Visual C++ .NET 2003

[7] Microsoft Visual C++ 2005

[8] Microsoft Visual C++ 2005 Express Edition

[9] Microsoft Visual C++ 2008

[10] Open WATCOM C++

[11] Open WATCOM C++ 1.3

[0] None
Compiler: O

Done

Selecting a Windows Compiler Configuration

MATLAB helps you choose a compiler configuration by generating a list of
either:

e All supported compilers. This is the same information found on the
Supported and Compatible Compilers Web page. To see this list, follow the
instructions in “Viewing Supported Windows Compilers” on page 3-24.

¢ Installed compilers found on your system. Only compilers supported by
MATLAB are in this list.

To select a configuration from a list of supported compilers found on your
system, type:

mex -setup

MATLAB displays the following dialog. The text has been formatted to fit
the page.

3-25

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

Note The list of compilers shown on your system might be different from the
list shown in this example. The path names to your compilers might also be
different. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

Please choose your compiler for building external interface (MEX)
files.

Would you like mex to locate installed compilers [y]/n? y

Select a compiler:

[1] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker) in
C:\Program Files\Intel\Compiler\Fortran\9.1

[2] Lcc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2007b\sys\1lcc

[3] Microsoft Visual C++ 2005 in
C:\Program Files\Microsoft Visual Studio 8

[0] None

Compiler: 2

Please verify your choices:

Compiler: Lcc-win32 C 2.4.1
Location: C:\PROGRA-1\MATLAB\R2007b\sys\lcc

Are these correct?([y]l/n): y

Trying to update options file:

C:\WINNT\Profiles\auser\Application Data\MathWorks\MATLAB\R2007b\
mexopts.bat

From template:

C:\PROGRA~1\MATLAB\R2007b\bin\win32\mexopts\lccopts.bat

Done .

3-26

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Building MEX-Files

When to Change the Selected Compiler Configuration. On Windows
systems, if you create C/C++ and Fortran MEX-files, you must choose the
appropriate compiler for the language you are using. If your selected compiler
1s the wrong language, it generates error messages. To see the language of
your selected compiler, type:

cc = mex.getCompilerConfigurations;
cc.lLanguage

You can change the compiler using either mex -setup or by “Specifying a
Windows Options File” on page 3-28.

Getting Windows Configuration Information

On Windows systems, there is one compiler configuration. Use the
mex.getCompilerConfigurations function to find the selected compiler
configuration.

To get information about the selected compiler, type:

cc = mex.getCompilerConfigurations

MATLAB creates a mex.CompilerConfiguration object cc and displays its
properties:

CC =

mex.CompilerConfiguration
package: mex

properties:
Name: 'Microsoft Visual C++ 2005
Manufacturer: 'Microsoft’
Language: 'C++'
Version: '8.0'
Location: 'C:\Program Files\Microsoft Visual Studio 8'
Details: [1x1 mex.CompilerConfigurationDetails]

list of methods

To see the build options used by the selected compiler, type:

3-27

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

ccOptions = cc.Details

MATLAB creates a mex.CompilerConfigurationDetails object ccOptions
and displays the options:

ccOptions =

mex.CompilerConfigurationDetails
package: mex

properties:
CompilerExecutable: 'cl'
CompilerFlags: [1x120 char]
OptimizationFlags: '/02 /Oy- /DNDEBUG'
DebugFlags: '/Zi /Fd"SOUTDIRSSMEX_ NAMES%MEX_ EXTS.pdb"'
LinkerExecutable: 'link'
LinkerFlags: [1x257 char]
LinkerOptimizationFlags: "'
LinkerDebugFlags: '/DEBUG
/PDB: "SsOUTDIRSSMEX_ NAMES%%MEX_ EXTS%.pdb"'

list of methods
Specifying a Windows Options File

MATLAB includes template options files you can use with particular
compilers. The options files are located in the following folders.

Platform Folder
Windows matlabroot\bin\win32\mexopts
64-bit Windows matlabroot\bin\win64\mexopts

On Windows systems, the options file has a .bat file extension.

For information on how to modify options files for particular systems, see
“Custom Building MEX-Files” on page 3-49.

3-28

Building MEX-Files

Use the - f option to specify an options file. To use this option, at the MATLAB
prompt, type:

mex filename -f optionsfile

where optionsfile is the full path to the options file.

You might need to specify an options file if you want to use a different
compiler (and not use the -setup option), or you want to compile MAT or
engine standalone programs.

Selecting a Compiler on UNIX Platforms

A selected compiler configuration specifies the compiler and build options
MATLAB uses every time you invoke the mex build script. The compiler in this
configuration is the selected compiler. It is the program that compiles source
code into object code. A configuration is the set of programs and instructions
that builds source code into shared libraries and standalone executable files.

To select a configuration, use the mex -setup command. You can set or change
the configuration anytime, from either the MATLAB or the system command
prompt. After you choose a configuration, it becomes the default and you no
longer have to select one to compile MEX-files.

You can view information about the selected compiler configuration using the
mex.getCompilerConfigurations function.

You can change the compiler configuration for a single call to the mex script
using the -f switch, which specifies an options file. Subsequent calls to mex
continue to use the selected compiler configuration.

For more information about these topics, see:

e “Selecting a UNIX Compiler Configuration” on page 3-30
® “Getting UNIX Configuration Information” on page 3-31
e “Specifying a UNIX Options File” on page 3-32

3-29

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-30

Selecting a UNIX Compiler Configuration

You can set or change your compiler configuration anytime from either the
MATLAB command prompt or the UNIX shell, using the command:

mex -setup

MATLAB shows you the available compiler configurations, called options
files, in the following message:

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

Using the 'mex -setup' command selects an options file that is
placed in ~/.matlab/R2008a and used by default for 'mex'. An
options file in the current working directory or specified on the
command line overrides the default options file in
~/.matlab/R2008a.

To override the default options file, use the 'mex -f' command
(see 'mex -help' for more information).

MATLAB generates a list like the following:
The options files available for mex are:

1: /mathworks/AH/devel/bat/Akernel/perfect/matlab/bin/gccopts.sh :
Template Options file for building gcc MEX-files

2: /mathworks/AH/devel/bat/Akernel/perfect/matlab/bin/mexopts.sh :
Template Options file for building MEX-files via the system ANSI

compiler

0: Exit with no changes

To choose the compiler you want to use, respond to the MATLAB prompt:

Enter the number of the compiler (0-2):

Type the number corresponding to your selection. (If you do not want to
change your configuration, type 0. MATLAB returns to the command prompt.)
MATLAB displays information like the following:

Building MEX-Files

matlabroot/bin/gccopts.sh is being copied to
/home/auser/.matlab/R2008a/mexopts.sh

Getting UNIX Configuration Information

On UNIX systems, there are three configurations, one for each compiler
language (C, C++ and Fortran). Use the mex.getCompilerConfigurations
function to view details about the compiler configurations.

To get information about the compiler configuration, type:

cc = mex.getCompilerConfigurations

MATLAB creates a mex.CompilerConfiguration object cc and displays its
properties:

CcC =

1x3 mex.CompilerConfiguration
package: mex

properties:
Name
Manufacturer
Language
Version
Location
Details

list of methods

On the UNIX platform, cc is an array of three CompilerConfiguration
objects — one for each language (C, C++, and Fortran). To see the compiler
names, type:

disp('Compiler Name')
for 1 = 1:3; disp(cc(i).Name); end;

MATLAB displays information like:

3-31

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-32

Compiler Name
GNU C

GNU C++

g95

Note On UNIX systems, mex.CompilerConfiguration.Location is an
empty string

Specifying a UNIX Options File
MATLAB includes template options files you can use with particular
compilers. The options files are located in matlabroot/bin.

The UNIX options file is named *opts.sh, where * is either mex or a specific
compiler name.

For information on how to modify options files for particular systems, see
“Custom Building MEX-Files” on page 3-49.

Use the - f option to specify an options file. To use this option, at the MATLAB
prompt, type:

mex filename -f optionsfile
where optionsfile is the full path to the options file.
You might need to specify an options file in the following situations:

® You want to use a different compiler (and not use the -setup option), or
you want to compile MAT or engine standalone programs.

®* You do not want to use the system C/C++ compiler.

Linking Multiple Files
You can combine multiple source files, object files, and file libraries to build a
binary MEX-file. To do this, list the additional files, with their file extensions,

Building MEX-Files

separated by spaces. The name of the MEX-file is the name of the first file in
the list.

The following command combines multiple files of different types into a
binary MEX-file called circle.ext, where ext is the extension corresponding
to the current platform:

mex circle.c square.obj rectangle.c shapes.lib

For a Fortran files, type:

mex circle.F square.o rectangle.F shapes.o

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Create a MAKEFILE that
contains a rule for producing object files from each of your source files, and
then invoke the mex build script to combine your object files into a binary
MEX-file. This way you can ensure that your source files are recompiled
only when necessary.

Overview of Building the timestwo MEX-File

MATLAB provides an example MEX-file, timestwo, for you to use to configure
your system. This function takes a scalar input and doubles it.

The C source file is timestwo.c, and the Fortran source file is timestwo.F.
These files are in matlabroot\extern\examples\refbook, where matlabroot
1s the MATLAB root folder, the value returned by the matlabroot command.

To work with these files, copy them to a local folder. For example:

cd('c:\work")
copyfile([matlabroot '\extern\examples\refbook\timestwo.c'])
copyfile([matlabroot '\extern\examples\refbook\timestwo.F'])

To select your compiler, follow the instructions in either “Selecting a Compiler
on UNIX Platforms” on page 3-29 or “Selecting a Compiler on Windows
Platforms” on page 3-23.

Use the mex function to build the binary MEX-file. If you are using a C/C++
compiler, type:

3-33

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-34

mex timestwo.c

If you are using a Fortran compiler, type:

mex timestwo.F

This command creates the file timestwo.ext, where ext is the value returned
by the mexext function. You call timestwo as if it were a MATLAB function.
For example, at the MATLAB command prompt, type:

timestwo (4)

MATLAB displays:

ans =
8

Note In a future version of MATLAB, the default mex function will change to
use the large-array-handling API. This means the -largeArrayDims option
will be the default. For information about mex options, see “MEX Script
Switches” on page 3-49. For information about the large-array-handling API,
see “Handling Large mxArrays” on page 4-37.

Troubleshooting MEX-Files

Troubleshooting MEX-Files

In this section...

“Technical Support” on page 3-35
“Configuration Issues” on page 3-35
“Understanding MEX-File Problems” on page 3-38

“Compiler and Platform-Specific Issues” on page 3-42

“Memory Management Issues” on page 3-43

Technical Support

MathWorks provides additional Technical Support through its Web site. A
few of the services provided are:

® Solution Search Engine

This knowledge base, updated several times each week, on our Web site
includes thousands of solutions and links to Technical Notes.

http://www.mathworks.com/support/
® Technical Notes

Our Technical Support staff writes technical notes to address commonly
asked questions.

http://www.mathworks.com/support/tech-notes/list_all.html

Configuration Issues

This section focuses on common problems that might occur when creating
binary MEX-files.

e “Search Path Problem on Microsoft Windows Systems” on page 3-36

o “MATLAB Path Names Containing Spaces on Windows Systems” on page
3-36

¢ “DLL Files Not on Path on Microsoft Windows Systems” on page 3-36

3-35

http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/list_all.html

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-36

¢ “Internal Error When Using mex -setup ()” on page 3-37

® “General Configuration Problem” on page 3-37

Search Path Problem on Microsoft Windows Systems

On Windows systems, if you move the MATLAB executable without
reinstalling the MATLAB software, you might need to modify mex.bat to
point to the new MATLAB location.

MATLAB Path Names Containing Spaces on Windows Systems
If you have problems building MEX-files on Windows systems and there is a
space in any of the folder names within the MATLAB path, either reinstall
MATLAB into a path name that contains no spaces or rename the folder that
contains the space. For example, if you install MATLAB under the Program
Files folder, you might have difficulty building MEX-files with certain C/C++
compilers.

DLL Files Not on Path on Microsoft Windows Systems

MATLAB fails to load binary MEX-files if it cannot find all .d11 files
referenced by the MEX-file; the .d11 files must be on the DOS path or in the
same folder as the MEX-file. This is also true for third-party .d11 files.

When this happens, MATLAB displays an error message of the following form:

??? Invalid MEX-file <mexfilename>:
The specified module could not be found.

On Windows systems, the third-party product Dependency Walker can be
used to diagnose errors related to loading and executing modules. Dependency
Walker is a free utility that scans any 32-bit or 64-bit Windows module and
builds a hierarchical tree diagram of all dependent modules. For each module
found, it lists all the functions that are exported by that module, and which of
those functions are actually being called by other modules. You can download
the Dependency Walker utility from the following Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RAL4L for information on using the
Dependency Walker.

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

Troubleshooting MEX-Files

Internal Error When Using mex -setup ()

Some antivirus software packages might conflict with the mex -setup process
or other mex commands. If you get an error message of the following form in
response to a mex command:

mex.bat: internal error in sub get _compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and reenter the
command. After you have successfully run the mex script, you can reenable
your antivirus software.

Alternatively, you can open a separate MS-DOS window and enter the mex
command from that window.

General Configuration Problem

Make sure you followed the configuration steps for your platform described
in this chapter. Also, refer to “Custom Building MEX-Files” on page 3-49
for additional information.

3-37

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-38

Understanding MEX-File Problems

This section contains information regarding common problems that occur
when creating binary MEX-files. Use the following figure to help isolate
these problems.

Can you
compile and run
timestwo.c or
timestwo.f?

Are you
using a supported
compiler?

Acquire a supported
compiler. See
"Supported Compilers"
for details.

yes

Double-check your
configuration. See
"Testing your Configuration
on UNIX (or Windows)".

Can you
compile your
program?

Check for:
ANSI C code
General C syntax errors

Can MATLAB
load your MEX-file?

Check for:
Spelling of mexFunction

Link against all libraries
you intend to use.

Segmentation
fault or
bus error?

Use:
matlab -check_malloc
mex -argcheck

Do you get
the right answer?

Troubleshooting MEX-File Creation Problems

Use:
mexPrintf
matlab -check_malloc

Run in debugger.

Troubleshooting MEX-Files

® “Problem 1 — Compiling a Source MEX-File Fails” on page 3-39
* “Problem 2 — Compiling Your Own Program Fails” on page 3-39
* “Problem 3 — Binary MEX-File Load Errors” on page 3-40

® “Problem 4 — Segmentation Fault or Bus Error” on page 3-41

® “Problem 5 — Program Generates Incorrect Results” on page 3-41

Problems 1 through 5 refer to the corresponding numbered sections of the
previous flowchart. For additional suggestions on resolving MEX-file build
problems, see the MathWorks Technical Support Web site at:

http://www.mathworks.com/support

Problem 1 — Compiling a Source MEX-File Fails

Syntax Errors Compiling C/C++ MEX-Files on UNIX. The most common
configuration problem in creating C/C++ source MEX-files on UNIX systems
involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is

if the header files supplied by MATLAB generate a string of syntax errors
when you try to compile your code. See “Building MEX-Files” on page 3-23 for
information on selecting the appropriate options file or, if necessary, obtain
an ANSI C compiler.

Problem 2 — Compiling Your Own Program Fails

Mixing ANSI and non-ANSI C code can generate a string of syntax errors.
MATLAB provides header and source files that are ANSI C compliant.
Therefore, your C code must also be ANSI compliant.

Other common problems that can occur in any C/C++ program are neglecting
to include all necessary header files, or neglecting to link against all required
libraries.

Make sure you are using a MATLAB-supported compiler. See “What You Need

to Build MEX-Files” on page 3-23 for this information. Additional information
can be found in “Compiler and Platform-Specific Issues” on page 3-42.

3-39

http://www.mathworks.com/support

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-40

Symbol mexFunction Unresolved or Not Defined. Attempting to
compile a MEX-function that does not include a gateway function generates

errors about the mexFunction symbol. For example, using a C/C++ compiler,
MATLAB displays information like:

LINK : error LNK2001: unresolved external symbol mexFunction

Using a Fortran compiler, MATLAB displays information like:

unresolved external symbol _MEXFUNCTION

If you want to call functions from a C/C++ or Fortran library from MATLAB,
you must write a gateway function, as described in “Create a Gateway
Routine” on page 3-6.

Problem 3 — Binary MEX-File Load Errors

If you receive an error of the form:

Unable to load mex file:
??? Invalid MEX-file

MATLAB does not recognize your MEX-file.

MATLAB loads MEX-files by looking for the gateway routine, mexFunction.
If you misspell the function name, MATLAB cannot load your MEX-file
and generates an error message. On Windows systems, check that you are
exporting mexFunction correctly.

On some platforms, if you fail to link against required libraries, you might get
an error when MATLAB loads your MEX-file rather than when you compile
your MEX-file. In such cases, a system error message referring to unresolved
symbols or unresolved references appears. Be sure to link against the library
that defines the function in question.

On Windows systems, MATLAB fails to load MEX-files if it cannot find all
.d11 files referenced by the MEX-file; the .d11 files must be on the path or in
the same folder as the MEX-file. This is also true for third-party .d11 files.
See “DLL Files Not on Path on Microsoft Windows Systems” on page 3-36 for
information to diagnose this problem.

Troubleshooting MEX-Files

Problem 4 — Segmentation Fault or Bus Error

If a binary MEX-file causes a segmentation violation or bus error, it means
the MEX-file has attempted to access protected, read-only, or unallocated
memory. Since this is such a general category of programming errors, such
problems are sometimes difficult to track down.

Segmentation violations do not always occur at the same point as the logical
errors that cause them. If a program writes data to an unintended section of
memory, an error might not occur until the program reads and interprets the
corrupted data. Consequently, a segmentation violation or bus error can occur
after the MEX-file finishes executing.

MATLAB provides the following features to help you troubleshoot problems of
this nature:

® Recompile your source MEX-file with argument checking (C/C++ MEX-files
only). You can add a layer of error checking to your MEX-file by
recompiling with the mex script flag -argcheck. This warns you about
invalid arguments to both MATLAB MEX Library and MX Matrix Library
API functions.

Although your MEX-file will not run as efficiently as it can, this switch
detects errors such as passing null pointers to API functions.

¢ Run MATLAB within a debugging environment. This process is already
described in the chapters on creating C/C++ and Fortran source MEX-files,
respectively.

Problem 5 — Program Generates Incorrect Results

If your program generates the wrong answer(s), there are several causes.
First, there could be an error in the computational logic. Second, the program
could be reading from an uninitialized section of memory. For example,
reading the 11th element of a 10-element vector yields unpredictable results.

Another cause of generating a wrong answer could be overwriting valid data
due to memory mishandling. For example, writing to the 15th element of a
10-element vector might overwrite data in the adjacent variable in memory.
This case can be handled in a similar manner as segmentation violations,
as described in Problem 4.

3-41

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-42

In all of these cases, you can use mexPrintf to examine data values at
intermediate stages or run MATLAB within a debugger to exploit all the
tools the debugger provides.

Compiler and Platform-Specific Issues

This section describes situations specific to particular compilers and
platforms.

® “Using Binary MEX-Files from Other Sources” on page 3-42
¢ “Linux gcc Compiler Version Error” on page 3-42

e “Fortran Source MEX-Files Compiler Errors” on page 3-42
¢ “Binary MEX-Files Created in Watcom IDE” on page 3-43

Using Binary MEX-Files from Other Sources

If you obtain a binary MEX-file from another source, be sure the file was
compiled for the same platform on which you want to run it. See “Introducing
MEX-Files” on page 3-2 for platform-specific information.

When you try to run a binary MEX-file from a version of MATLAB that is
different from the version that created the MEX-file, MATLAB displays an
error message of the following form:

??? Invalid MEX-file <mexfilename>:
The specified module could not be found.

Linux gcc Compiler Version Error

For information concerning a gcc compiler version error on Linux systems, see
the Technical Support solution 1-2H64MF.

Fortran Source MEX-Files Compiler Errors

When you try to compile a Fortran MEX-file using a free source form format,
MATLAB displays an error message of the following form:

Illegal character in statement label field

http://www.mathworks.com/support/solutions/data/1-2H64MF.html

Troubleshooting MEX-Files

mex supports the fixed source form. The difference between free and fixed
source forms is explained in the Fortran Language Reference Manual Source
Forms topic. The URL for this topic is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/
docs/1lrm/1rm0015.htm#source_formatmenu?&Record=383697&STASH=7

The URL for the Fortran Language Reference Manual is:

http://h21007 . .www2.hp.com/portal/download/files/unprot/Fortran/
docs/1lrm/dflrm.htm

Binary MEX-Files Created in Watcom IDE

If you use the Watcom IDE to create MEX-files and get unresolved
references to API functions when linking against our libraries, check the
argument-passing convention. The Watcom IDE uses a default switch that
passes parameters in registers. MATLAB requires that you pass parameters
on the stack.

Memory Management Issues

When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

In general, we recommend that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It

1s more efficient to perform this cleanup in the source MEX-file than to
rely on the automatic mechanism. This approach is consistent with other
MATLAB API applications (i.e., MAT-file applications, engine applications,
and MATLAB® Compiler™ generated applications, which do not have any
automatic cleanup mechanism.)

However, you should not destroy an mxArray in a source MEX-file when it is:

® passed to the MEX-file in the right-hand side list prhs[]

3-43

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7
http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-44

¢ returned in the left-hand side list plhs[]

® returned by mexGetVariablePtr

® used to create a structure

This section describes situations specific to memory management. We
recommend you review code in your source MEX-files to avoid using these
functions in the following situations. For additional information, see “Memory
Management” on page 4-41 in Creating C/C++ Language MEX-Files. For
guidance on memory issues, see “Strategies for Efficient Use of Memory”.

Additional tips are found in Technical Note 1107: "Avoiding Out of Memory
Errors" at the following URL:

http://www.mathworks.com/support/tech-notes/1100/1107.html
Potential memory management problems include:

* “Improperly Destroying an mxArray” on page 3-44

e “Incorrectly Constructing a Cell or Structure mxArray” on page 3-45
e “Creating a Temporary mxArray with Improper Data” on page 3-45
e “Creating Potential Memory Leaks” on page 3-46

¢ “Improperly Destroying a Structure” on page 3-47

® “Destroying Memory in a C++ Class Destructor” on page 3-48

Improperly Destroying an mxArray
Do not use mxFree to destroy an mxArray.

Example. In the following example, mxFree does not destroy the array
object. This operation frees the structure header associated with the array,
but MATLAB stills operates as if the array object needs to be destroyed. Thus
MATLAB tries to destroy the array object, and in the process, attempts to free
its structure header again:

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);

mxFree(temp); /* INCORRECT */

http://www.mathworks.com/support/tech-notes/1100/1107.html

Troubleshooting MEX-Files

Solution. Call mxDestroyArray instead:

mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray

Do not call mxSetCell or mxSetField variants with prhs[] as the member
array.

Example. In the following example, when the MEX-file returns, MATLAB
destroys the entire cell array. Since this includes the members of the cell, this
implicitly destroys the MEX-file’s input arguments. This can cause several
strange results, generally having to do with the corruption of the caller’s
workspace, if the right-hand side argument used is a temporary array (for
example, a literal or the result of an expression):

myfunction('hello')
/* myfunction is the name of your MEX-file and your code
/* contains the following: */

mxArray *temp = mxCreateCellMatrix(1,1);

mxSetCell(temp, O, prhs[0]); /* INCORRECT */

Solution. Make a copy of the right-hand side argument with
mxDuplicateArray and use that copy as the argument to mxSetCell (or
mxSetField variants). For example:

mxSetCell(temp, O, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data

Do not call mxDestroyArray on an mxArray whose data was not allocated by
an API routine.

Example. If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData,
specifying memory that was not allocated by mxCalloc, mxMalloc, or
mxRealloc as the intended data block (second argument), then when the
MEX-file returns, MATLAB attempts to free the pointers to real data and
imaginary data (if any). Thus MATLAB attempts to free memory, in this
example, from the program stack:

3-45

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-46

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL) ;
double data[5] = {1,2,3,4,5};

mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
/* INCORRECT */

Solution. Rather than use mxSetPr to set the data pointer, instead, create
the mxArray with the right size and use memcpy to copy the stack data into the
buffer returned by mxGetPr:

mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
double data[5] = {1,2,3,4,5};

memcpy (mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

Creating Potential Memory Leaks

Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB still freed the original memory. This is no longer the case.

For example:

pr = mxCalloc(5*5, sizeof(double));

. <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

will now leak 5%5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code to:

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
. <load data into pr>

or alternatively:

pr = mxCalloc(5*5, sizeof(double));

. <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree (mxGetPr(plhs[0]));

Troubleshooting MEX-Files

mxSetPr(plhs[0], pr);
Note that the first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can avoid memory leaks by
changing the code as described in this section.

Improperly Destroying a Structure

If you create a structure, you must call nxDestroyArray only on the structure.
A field in the structure points to the data in the array used by mxSetField

or mxSetFieldByNumber. When mxDestroyArray destroys the structure, it
attempts to traverse down through itself and free all other data, including the
memory in the data arrays. If you call mxDestroyArray on each data array,
the same memory is freed twice and this can corrupt memory.

Example. The following example creates three arrays: one structure array
aStruct and two data arrays, myDataOne and myDataTwo. Field name one
contains a pointer to the data in myDataOne, and field name two contains

a pointer to the data in myDataTwo.

mxArray *myDataOne;

mxArray *myDataTwo;

mxArray *aStruct;

const char *fields[] = { "one", "two" };

myDataOne mxCreateDoubleScalar(1.0);
myDataTwo = mxCreateDoubleScalar(2.0);

aStruct = mxCreateStructMatrix(1,1,2,fields);
mxSetField(aStruct, 0, "one", myDataOne);
mxSetField(aStruct, 1, "two", myDataTwo);
mxDestroyArray(myDataOne);
mxDestroyArray(myDataTwo) ;
mxDestroyArray(aStruct);

Solution. The command mxDestroyArray(aStruct) destroys the data in
all three arrays:

3-47

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-48

aStruct = mxCreateStructMatrix(1,1,2,fields);
mxSetField(aStruct, 0, "one", myDataOne);
mxSetField(aStruct, 1, "two", myDataTwo);
mxDestroyArray(aStruct);

Destroying Memory in a C++ Class Destructor

Do not use the mxFree or mxDestroyArray functions in a C++ destructor

of a class used in a MEX-function. If the MEX-function throws an error,
MATLAB cleans up MEX-file variables, as described in “Automatic Cleanup
of Temporary Arrays” on page 4-41.

If an error occurs that causes the object to go out of scope, MATLAB calls
the C++ destructor. Freeing memory directly in the destructor means both
MATLAB and the destructor free the same memory, which can corrupt
memory.

Custom Building MEX-Files

Custom Building MEX-Files

In this section...
“Who Should Read This Chapter” on page 3-49
“MEX Script Switches” on page 3-49

“Custom Building on UNIX Systems” on page 3-53
“Custom Building on Windows Systems” on page 3-58

Who Should Read This Chapter

In general, the defaults that come with MATLAB software should be sufficient
for building most binary MEX-files. Following are reasons that you might
need more detailed information:

®* You want to use an Integrated Development Environment (IDE), rather
than the provided script, to build MEX-files.

* You want to create an options file, for example, to use a compiler that is
unsupported.

* You want to exercise more control over the build process than the script
uses.

The script, in general, uses two stages (or three, for Microsoft Windows
platforms) to build MEX-files. These are the compile stage and the link
stage. In between these two stages, Windows compilers must perform some
additional steps to prepare for linking (the prelink stage).

MEX Script Switches

The mex script has a set of switches (also called options) that you can use to
modify the link and compile stages. The MEX Script Switches table lists the
available switches and their uses. Each switch is available on both UNIX and
Windows systems unless otherwise noted.

For customizing the build process, you should modify the options file, which

contains the compiler-specific flags corresponding to the general compile,
prelink, and link steps required on your system. The options file consists of

3-49

Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-50

a series of variable assignments; each variable represents a different logical
piece of the build process.

MEX Script Switches

Switch Function

@rsp_file (Windows systems only) Include the contents of
the text file rsp_file as command-line arguments
to mex.

-arch Build an output file for architecture arch.

To determine the value for arch, type
computer('arch') at the MATLAB Command
Prompt on the target machine. Valid values for
arch depend on the architecture of the build
platform. You can get this information from
the Help menu, as described in “Obtaining
Information About your Installation” in the
Desktop Tools and Development Environment
documentation.

-argcheck (C/C++ functions only) Add argument checking.
This adds code so arguments passed incorrectly to
MATLAB API functions cause assertion failures.

-C Compile only. Creates an object file, but not a
binary MEX-file.

-compatibleArrayDims | Build a binary MEX-file using the MATLAB
Version 7.2 array-handling API, which limits
arrays to 2231-1 elements. This option is the
default, but in the future the -largeArrayDims
option will be the default.

-CXX (UNIX systems only) Use the C++ linker to link
the MEX-file if the first source file is in C and
there are one or more C++ source or object files.
This option overrides the assumption that the
first source file in the list determines which linker
to use.

Custom Building MEX-Files

MEX Script Switches (Continued)

Switch Function

-Dname Define a symbol name to the C preprocessor.
Equivalent to a #define name directive in the
source.

Do not add a space after this switch.

-Dname=value Define a symbol name and value to the C
preprocessor. Equivalent to a #define name value
directive in the source.

Do not add a space after this switch.

-f optionsfile Specify location and name of options file to use.
Overrides the mex default-options-file search
mechanism.

-fortran (UNIX systems only) Specify that the gateway

routine is in Fortran. This option overrides the
assumption that the first source file in the list
determines which linker to use.

-g Create a binary MEX-file containing additional
symbolic information for use in debugging.
This option disables the mex default behavior of
optimizing built object code (see the -0 option).

-h[elp] Print help for mex.

-Ipathname Add pathname to the list of folders to search for
#include files.

Do not add a space after this switch.

-inline Inline matrix accessor functions (MX Matrix
Library). This option is deprecated and will

be removed in a future release. The generated
MEX-function may not be compatible with future
versions of MATLAB.

3-51

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-52

MEX Script Switches (Continued)

Switch

Function

-lname

Link with object library. On Windows systems,
name expands to name.1lib or 1ibname.1lib and on
UNIX systems, to 1ibname .so or 1libname.dylib.

Do not add a space after this switch.

-Lfolder

Add folder to the list of folders to search for
libraries specified with the -1 option. On UNIX
systems, you must also set the run-time library
path, as explained in “Setting Run-Time Library
Path” on page 1-15.

Do not add a space after this switch.

-largeArrayDims

Build a binary MEX-file using the MATLAB
large-array-handling API. This API can handle
arrays with more than 2231-1 elements when
compiled on 64-bit platforms. (See also the
-compatibleArrayDims option.)

No execute mode. Print any commands that
mex would otherwise have executed, but do not
actually execute any of them.

Optimize the object code. Optimization is enabled
by default and by including this option on the
command line. If the -g option appears without
the -0 option, optimization is disabled.

-outdir dirname

Place all output files in folder dirname.

-output resultname

Create binary MEX-file named resultname.
Automatically appends the appropriate MEX-file
extension. Overrides the default MEX-file naming
mechanism.

-setup

Specify the compiler options file to use when
calling the mex function. When you use this option,
all other command-line options are ignored.

Custom Building MEX-Files

MEX Script Switches (Continued)

Switch Function

-Uname Remove any initial definition of the C preprocessor
symbol name. (Inverse of the -D option.)

Do not add a space after this switch.

-V Verbose mode. Print the values for important
internal variables after the options file is
processed and all command-line arguments are
considered. Prints each compile step and final
link step fully evaluated.

name=value Override an options file variable for variable name.
For examples, see Override Option Details in the
Remarks section of the mex reference page.

Custom Building on UNIX Systems

On UNIX systems, there are two stages in MEX-file building: compiling and
linking.

Compile Stage on UNIX Systems
The compile stage must

® Add matlabroot/extern/include to the list of folders in which to find
header files (- Imatlabroot/extern/include).

® Define the preprocessor macro MATLAB_MEX_ FILE (-DMATLAB_MEX_ FILE).

e Compile the source file.

Link Stage on UNIX Systems
The link stage must

® Instruct the linker to build a shared library.

3-53

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-54

e If you link with your own libraries, set the run-time library path, which is
explained in “Setting Run-Time Library Path” on page 1-15.

® Link all objects from compiled source files.

* Export the mexFunction symbol, representing function called by MATLAB.

For Fortran MEX-files, the symbols are all lowercase and might have
appended underscores. For specific information, invoke the mex script in
verbose mode and examine the output.

Build Options on UNIX Systems

For customizing the build process, you should modify the options file.

The options file contains the compiler-specific flags corresponding to the
general steps outlined above. The options file consists of a series of variable
assignments. Each variable represents a different logical piece of the
build process. The options files provided with MATLAB are located in
matlabroot/bin. The section “UNIX Default Options File” on page 3-55,
describes how the mex script looks for an options file.

To aid in providing flexibility, there are two sets of options in the options file
that you can turn on and off with switches to the mex script. These sets of
options correspond to building in debug mode and building in optimization
mode. They are represented by the variables DEBUGFLAGS and OPTIMFLAGS,
respectively, one pair for each driver that is invoked (CDEBUGFLAGS for the
C/C++ compiler, FDEBUGFLAGS for the Fortran compiler, and LDDEBUGFLAGS for
the linker; similarly for the OPTIMFLAGS):

¢ If you build in optimization mode (the default), the mex script includes the
OPTIMFLAGS options in the compile and link stages.

¢ [fyou build in debug mode, the mex script includes the DEBUGFLAGS options
in the compile and link stages. It does not include the OPTIMFLAGS options.

® You can include both sets of options by specifying both the optimization and
debugging flags to the mex script (-0 and -g, respectively).

Aside from these special variables, the mex options file defines the executable
invoked for each mode (C/C++ compile, Fortran compile, link) and the flags for
each stage. You also can provide explicit lists of libraries that must be linked
in to all MEX-files containing source files of each language.

Custom Building MEX-Files

The variable summary follows.

C++ Fortran
Variable C Compiler | Compiler Compiler Linker
Executable cC CXX FC LD
Flags CFLAGS CXXFLAGS FFLAGS LDFLAGS
Optimization | COPTIMFLAGS | CXXOPTIMFLAGSFOPTIMFLAGS | LDOPTIMFLAGS
Debugging CDEBUGFLAGS | CXXDEBUGFLAGSFDEBUGFLAGS | LDDEBUGFLAGS
Additional CLIBS CXXLIBS FLIBS (none)
libraries

For specifics on the default settings for these variables, you can
¢ Examine the options file in matlabroot/bin/mexopts.sh (or the options
file you are using), or

® Invoke the mex script in verbose mode.

UNIX Default Options File
The default MEX options file provided with MATLAB is located in

matlabroot/bin. The mex script searches for an options file called
mexopts.sh in the following order:

¢ The current folder

¢ The folder specified by matlabroot/bin

¢ The folder returned by the prefdir function

mex uses the first occurrence of the options file it finds. If no options file is

found, mex displays an error message. You can directly specify the name of
the options file using the -f switch.

The UNIX options file is written in the Bourne shell script language.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file in fullfile(matlabroot,

3-55

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

'bin', 'mexopts.sh'), or you can invoke the mex script in verbose mode
(-v). Verbose mode prints the exact compiler options, prelink commands Gf
appropriate), and linker options used in the build process for each compiler.
“Custom Building on UNIX Systems” on page 3-53 gives an overview of the
high-level build process.

Files and Folders on UNIX Systems

This section describes the folder organization and purpose of the files
associated with the MATLAB C/C++ and Fortran API Reference on UNIX
systems.

|matlabroot|

bin
$ARCH

src

eng_mat

H

mex

mx

refbook

matlabroot/bin. Contains the following files for the MATLAB API:

mex
UNIX shell script that creates binary MEX-files from C/C++ or Fortran
MEX-file source code.

3-56

Custom Building MEX-Files

matlab
UNIX shell script that initializes your environment and then invokes
the MATLAB interpreter.

This folder also contains the preconfigured options files that the mex script
uses with particular compilers. For more information, see “Specifying a UNIX
Options File” on page 3-32.

matlabroot/bin/arch. Contains libraries, where arch specifies a particular
UNIX platform. On some UNIX platforms, this folder contains two versions
of this library. Library file names ending with .so or .dylib are shared
libraries.

matlabroot/extern/include. Contains the header files for developing
C/C++ and Fortran applications that interface with MATLAB. The relevant
header files for the MATLAB API are:

engine.h
C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

mat.h
C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

mex.h
Header file for building C/C++ MEX-files. Contains function prototypes
for mex routines.

fintrf.h
Header file for building Fortran MEX-files. Contains function
prototypes for mex routines.

matlabroot/extern/src. Contains C source files to support MEX-file
features such as argument checking and versioning.

3-57

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-58

Custom Building on Windows Systems

There are three stages to MEX-file building for both C/C++ and Fortran on
Windows systems: compiling, prelinking, and linking.

Compile Stage on Windows Systems
For the compile stage, a mex options file must

Set up paths to the compiler using the COMPILER (for example, Watcom),
PATH, INCLUDE, and LIB environment variables. If your compiler always has
the environment variables set (e.g., in AUTOEXEC.BAT), you can comment
them out in the options file.

Define the name of the compiler, using the COMPILER environment variable,
if needed.

Define the compiler switches in the COMPFLAGS environment variable:
= The switch to create a DLL is required for MEX-files.

= For standalone programs, the switch to create an exe is required.
= The -c switch (compile only; do not link) is recommended.

= The switch to specify 8-byte alignment.

= You can use any other switch specific to the environment.
Define preprocessor macro, with -D, MATLAB_MEX_FILE is required.

Set up optimizer switches and/or debug switches using OPTIMFLAGS and
DEBUGFLAGS.

= If you build in optimization mode (the default), the mex script includes
the OPTIMFLAGS option in the compile stage.

= If you build in debug mode, the mex script includes the DEBUGFLAGS
options in the compile stage. It does not include the OPTIMFLAGS option.

= You can include both sets of options by specifying both the optimization
and debugging flags to the mex script (OPTIMFLAGS and DEBUGFLAGS,
respectively).

Custom Building MEX-Files

Prelink Stage on Windows Systems

The prelink stage dynamically creates import libraries to import the required
function into the MEX, MAT, or engine file:

e All MEX-files link against libmex.d11l (MEX library).

e MAT standalone programs link against 1ibmx.d11 (array access library)
and libmat.d1ll (MAT-functions).

® Engine standalone programs link against 1ibmx.d1l1l (array access library)
and libeng.dll for engine functions.

Link Stage on Windows Systems
For the link stage, a mex options file must

e Define the name of the linker in the LINKER environment variable.
® Define the LINKFLAGS environment variable that must contain

= The switch to create a shared library for MEX-files, or the switch to
create an exe for standalone programs.

= Export of the entry point to the MEX-file as mexFunction for C/C++ or
MEXFUNCTION for Fortran.

= The import library (or libraries) created in the PRELINK_CMDS stage.
= You can use any other link switch specific to the compiler.

® Set up the linking optimization and debugging switches LINKOPTIMFLAGS
and LINKDEBUGFLAGS. Use the same conditions described in the “Compile
Stage on Windows Systems” on page 3-58.

® Define the link-file identifier in the LINK_FILE environment variable, if
necessary. For example, Watcom uses file to identify that the name
following is a file and not a command.

® Define the link-library identifier in the LINK_LIB environment variable,
if necessary. For example, Watcom uses library to identify the name
following is a library and not a command.

® Optionally, set up an output identifier and name with the output switch
in the NAME_OUTPUT environment variable. The environment variable
MEX_NAME contains the name of the first program in the command line. This

3-59

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-60

must be set for -output to work. If this environment is not set, the compiler
default is to use the name of the first program in the command line. Even if
this is set, you can override it by specifying the mex -output switch.

Linking DLL Files to Binary MEX-Files on Windows Systems
To link a DLL to a MEX-file, list the DLL’s .1ib file on the command line.

Windows Default Options File

The default MEX options file is placed in your user profile folder after you
configure your system by running mex -setup. The mex script searches for an
options file called mexopts.bat in the following order:

e The current folder

® The user profile folder (returned by the prefdir function)

mex uses the first occurrence of the options file it finds. If no options file

is found, mex searches your machine for a supported C/C++ compiler and
automatically configures itself to use that compiler. Also, during the
configuration process, it copies the compiler’s default options file to the user
profile folder. If multiple compilers are found, you are prompted to select
one.

On Windows systems, the options file is written in the Perl script language.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file, mexopts.bat, or you can invoke
the mex script in verbose mode (-v). Verbose mode prints the exact compiler
options, prelink commands, if appropriate, and linker options used in the
build process for each compiler. “Custom Building on Windows Systems” on
page 3-58 gives an overview of the high-level build process.

The User Profile Folder. The Windows user profile folder contains
user-specific information such as desktop appearance, recently used files,
and Start menu items. The mex and mbuild utilities store their respective
options files, mexopts.bat and compopts.bat, which are created during the
-setup process, in a folder of your user profile folder, named Application
Data\MathWorks\MATLAB.

Custom Building MEX-Files

Files and Folders on Windows Systems

This section describes the folder organization and purpose of the files
associated with the MATLAB C/C++ and Fortran API Reference on Microsoft
Windows systems.

The following figure illustrates the folders in which the MATLAB API files
are located. In the illustration, matlabroot symbolizes the top-level folder
where MATLAB is installed on your system.

|matlabroot|

bin

win32

include

ﬁ

i
|

src

examples

eng_mat

mex

mx

iuiﬁ

refbook

matlabroot\bin. Contains the mex.bat batch file that builds C/C++ and
Fortran files into binary MEX-files. Also contains mex.pl, which is a Perl
script used by mex.bat.

3-61

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-62

matlabroot\bin\arch\mexopts. Contains the preconfigured options files
that the mex script uses with particular compilers. For more information, see
“Specifying a Windows Options File” on page 3-28.

matlabroot\extern\include. Contains the header files for developing
C/C++ and Fortran applications that interface with MATLAB.

The relevant header files for the MATLAB API (MEX-files, engine, and
MAT-files) are

engine.h
C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

mat.h
C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

mex.h
Header file for building C/C++ MEX-files. Contains function prototypes
for mex routines.

fintrf.h
Header file for building Fortran MEX-files. Contains function
prototypes for mex routines.

* . def
Files used by Microsoft Visual C++ and Microsoft Fortran compilers.

matlabroot \extern\src. Contains files used for debugging MEX-files.

Custom Building MEX-Files

Compiling MEX-Files with the Microsoft Visual C++ IDE

Note This section provides information on how to compile source MEX-files
in the Microsoft Visual C++ IDE. It is not totally inclusive. This section
assumes that you know how to use the IDE. If you need more information on
using the Microsoft Visual C++ IDE, refer to the corresponding Microsoft
documentation.

To build MEX-files with the Microsoft Visual C++ integrated development
environment:

1 Create a project and insert your MEX source files.

2 Create a .def file to export the MEX entry point. On the Project menu,
click Add New Item and select Module-Definition File (.def). For
example:

LIBRARY MYFILE

EXPORTS mexFunction <-- for a C MEX-file
or
EXPORTS _MEXFUNCTION <-- for a Fortran MEX-file

3 On the Project menu, click Properties for the project to open the property
pages.

4 Under C/C++ General properties, add the MATLAB include folder,
matlab\extern\include, as an additional include folder.

5 Under C/C++ Preprocessor properties, add MATLAB_MEX FILE as a
preprocessor definition.

6 Under Linker General properties, change the output file extension to
.mexw32 if you are building for a 32-bit platform or .mexw64 if you are
building for a 64-bit platform.

7 Locate the .lib files for the compiler you are using
under matlabroot\extern\lib\win32\microsoft or
matlabroot\extern\lib\win64\microsoft. Under Linker
Input properties, add libmx.1ib, 1ibmex.1lib, and l1ibmat.lib as
additional dependencies.

3-63

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-64

8 Under Linker Input properties, add the module definition (.def) file
you created.

9 Under Linker Debugging properties, if you intend to debug the
MEX-file using the IDE, specify that the build should generate debugging
information. For more information about debugging, see “Debugging on
the Microsoft Windows Platforms” on page 4-26.

If you are using a compiler other than the Microsoft Visual C++ compiler,
the process for building MEX files is like that described above. In step

4, locate the .1ib files for the compiler you are using in a folder of
matlabroot\extern\1lib\win32 or matlabroot\extern\lib\win64. For
example, if you are using an Open Watcom C/C++ compiler, look in
matlabroot\extern\lib\win32\watcom.

Calling LAPACK and BLAS Functions from MEX-Files

Calling LAPACK and BLAS Functions from MEX-Files

In this section...
“What You Need to Know” on page 3-65
“Creating a MEX-File Using LAPACK and BLAS Functions” on page 3-66

“Preserving Input Values from Modification” on page 3-68

“Passing Arguments to Fortran Functions from C/C++ Programs” on page

3-69

“Passing Arguments to Fortran Functions from Fortran Programs” on page
3-70

“Handling Complex Numbers in LAPACK and BLAS Functions” on page
3-71

“Modifying the Function Name on UNIX Systems” on page 3-74

What You Need to Know

You can call a LAPACK or BLAS function using a MEX-file. To create a
MEX-file, you need C/C++ or Fortran programming experience and the
software resources (compilers and linkers) to build an executable file. It also
is helpful to understand how to use Fortran subroutines. MATLAB provides
the mwlapack and mwblas libraries in matlabroot/extern/1lib. To work with
complex numbers, use the conversion routines in the fort.c and fort.h files
in matlabroot/extern/examples/refbook. To help you get started, there
are source code examples in matlabroot/extern/examples/refbook.

If you do not know how to use MEX-files, start with the following sections:

® “Using MEX-Files to Call C/C++ and Fortran Programs” on page 3-5
* “What You Need to Build MEX-Files” on page 3-23

For an overview showing how to create and build sample MEX-files, start
with the following sections:

® “Creating a Source MEX-File” on page 3-5
® “Overview of Building the timestwo MEX-File” on page 3-33

3-65

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-66

Creating a MEX-File Using LAPACK and BLAS
Functions
To call LAPACK or BLAS functions:

1 Create a source MEX-file containing the mexFunction gateway routine,
as described in the following topics:
® “Gateway Routine” on page 4-2 for C/C++ language MEX-files.
* “Gateway Routine” on page 5-2 for Fortran language MEX-files.

2 Select a supported compiler for your platform, as described in the following
topics:

e “Selecting a Compiler on Windows Platforms” on page 3-23

e “Selecting a Compiler on UNIX Platforms” on page 3-29.

3 Build a binary MEX-file using the mex command with one or more of the
following options:

¢ Link your source file to one or both of the libraries, mwlapack and mwblas.

e Use the -largeArrayDims option because the mwlapack and mwblas
libraries support 64-bit integers for matrix dimensions.

e If your function uses complex numbers, build your source file with

fort.c and include the fort.h header file.

The following topics show how to use the mex command using the example
matrixMultiply.c. To work with this file, copy it to a local folder. For
example:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook',
'matrixMultiply.c'), fullfile('c:', 'work'));

The example files are read-only files. To modify an example, ensure the file
1s writable by typing:

fileattrib('matrixMultiply.c', '+w');

Calling LAPACK and BLAS Functions from MEX-Files

Building on Windows Platforms

There are compiler-specific versions of the libraries on the Windows platform.
To link to a specific library, look at the matlabroot/extern/lib/ folder and
choose the path for your architecture and compiler. For example, type:

cc = mex.getCompilerConfigurations('Any', 'Selected');
cc.Manufacturer
computer

If you selected a Microsoft C/C++ compiler on a 32-bit platform, MATLAB
displays:

ans =
Microsoft
ans =
PCWIN

Link to the libraries in matlabroot/extern/lib/win32/microsoft/. To
simplify the build command, create variables lapacklib and blaslib, which
identify the full path and file name of each library.

lapacklib = fullfile(matlabroot,

'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');
blaslib = fullfile(matlabroot,
"extern', 'lib', 'win32', 'microsoft', 'libmwblas.lib');

When you use a variable to identify the library, you must use the function
syntax of the mex command. To build matrixMultiply.c, which uses
functions from the BLAS library, type:

mex('-v', '-largeArrayDims', ‘'matrixMultiply.c', blaslib)

To build a MEX-file with functions that use complex numbers, see “Handling
Complex Numbers in LAPACK and BLAS Functions” on page 3-71.

Building on UNIX Platforms

To build the MEX-file matrixMultiply.c, which uses functions from the
BLAS library, type:

mex -v -largeArrayDims matrixMultiply.c -lmwblas

3-67

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-68

To build a MEX-file with functions that use complex numbers, see “Handling
Complex Numbers in LAPACK and BLAS Functions” on page 3-71.

Testing the matrixMultiply MEX-File
To run the matrixMultiply MEX-file, type:

A=1[135;24T7];
B=1[-5811; 39 21; 4 0 8];
X = matrixMultiply(A,B)

MATLAB displays:

X =
24 35 114
30 52 162

Preserving Input Values from Modification

Many LAPACK and BLAS functions modify the values of arguments passed
to them. It is good practice to make a copy of arguments you can modify
before passing them to these functions. For information about how MATLAB
handles arguments to the mexFunction, see “Managing Input and Output
Parameters” on page 3-11.

Example — matrixDivide.c

The following example calls the LAPACK function dgesv that modifies its
input arguments. The code in this example makes copies of prhs[0] and
prhs[1], and passes the copies to dgesv to preserve the contents of the input
arguments.

To see the example, open the file in MATLAB Editor. To create the MEX-file,
copy the source file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook',
'matrixDivide.c'), fullfile('c:', 'work'));

To build the file on Windows, type:

lapacklib = fullfile(matlabroot,
'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

Calling LAPACK and BLAS Functions from MEX-Files

mex('-v', '-largeArrayDims', 'matrixDivide.c', lapacklib)
To build the file on UNIX type:
mex -v matrixDivide.c -lmwlapack

To test, type:

A=1[12; 3 4];
B = [5; 6];
X = matrixDivide(A,B)

MATLAB displays:

X =
-4.0000
4.5000

Passing Arguments to Fortran Functions from C/C++
Programs

The LAPACK and BLAS functions are written in Fortran. Be aware that
C/C++ and Fortran use different conventions for passing arguments to and
from functions. Fortran functions expect the arguments to be passed by
reference, while arguments to C/C++ functions are passed by value. When
you pass by value, you pass a copy of the value. When you pass by reference,
you pass a pointer to the value. A reference is also the address of the value.

When you call a Fortran subroutine, like a function from LAPACK or BLAS,
from a C/C++ program, be sure to pass the arguments by reference. To do
this, precede the argument with an ampersand (&), unless that argument

is already a reference. For example, when you create a matrix using the
mxGetPr function, you create a reference to the matrix and do not need the
ampersand before the argument.

In the following code snippet, variables m, n, p, one, and zero need the &
character to make them a reference. Variables A, B, C, and chn are pointers,
which are references.

/* pointers to input & output matrices*/
double *A, *B, *C;
/* matrix dimensions */

3-69

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-70

mwSignedIndex m,n,p;

/* other inputs to dgemm */
char *chn = "N";

double one = 1.0, zero = 0.0;

/* call BLAS function */
dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

Example — matrixMultiply.c

The matrixMultiply.c example calls dgemm, passing all arguments by
reference. To see the source code, open the file in MATLAB Editor. To build
and run this example, see “Creating a MEX-File Using LAPACK and BLAS
Functions” on page 3-66.

Passing Arguments to Fortran Functions from Fortran
Programs

You can call LAPACK and BLAS functions from Fortran MEX files. The
following example takes two matrices and multiplies them by calling the
BLAS routine dgemm:

#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
mwPointer plhs(*), prhs(*)

integer nlhs, nrhs

mwPointer mxcreatedoublematrix

mwPointer mxgetpr

mwPointer A, B, C

mwSignedIndex mxgetm, mxgetn

mwSignedIndex m, n, p, numel

double precision one, zero, ar, br

character ch1, ch2

ch1 = 'N'
ch2 = 'N'
one = 1.0
zero = 0.0

Calling LAPACK and BLAS Functions from MEX-Files

A = mxgetpr(prhs(1))
B = mxgetpr(prhs(2))
m = mxgetm(prhs(1))
p = mxgetn(prhs(1))
n = mxgetn(prhs(2))

plhs(1) = mxcreatedoublematrix(m, n, 0.0)
C = mxgetpr(plhs(1))

numel = 1

call mxcopyptrtoreal8(A, ar, numel)

call mxcopyptrtoreal8(B, br, numel)

call dgemm(ch1, ch2, m, n, p, one, %val(A), m,
+ %sval(B), p, zero, %val(C), m)

return
end

Handling Complex Numbers in LAPACK and BLAS
Functions

Caution Use care when calling level 1 BLAS functions (for example, zdotu,
zdotc) with complex numbers in a C/C++ binary MEX-file.

MATLAB stores complex numbers differently than Fortran. MATLAB stores
the real and imaginary parts of a complex number in separate, equal length
vectors, pr and pi. Fortran stores the same complex number in one location
with the real and imaginary parts interleaved.

As a result, complex variables exchanged between MATLAB and a Fortran
function are incompatible. Use the conversion routines, mat2fort and
fort2mat, that change the storage format of complex numbers to address

this incompatibility.

* mat2fort — Convert MATLAB complex matrix to Fortran complex storage.

3-71

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-72

e fort2mat — Convert Fortran complex storage to MATLAB real and
Imaginary parts.

The fort.c and fort.h files provide routines for conversion between
MATLAB and Fortran complex data structures. These files define the
mat2fort and fort2mat routines.

To use these routines, you need to:

1 Include the fort.h header file in your source file, using the statement
#include "fort.h".

2 Link the fort.c file with your program. Specify the full path,
matlabroot/extern/examples/refbook for fort.c in the build command.

3 Use the - Ipathname switch to indicate the header file. Specify the full path,
matlabroot/extern/examples/refbook for fort.h in the build command.

4 When you specify the full path, replace the term matlabroot with the
actual folder name.

Handling Complex Number Input Values

It is unnecessary to copy arguments for functions that use complex number
input values. The mat2fort conversion routine creates a copy of the
arguments for you. For information, see “Preserving Input Values from
Modification” on page 3-68.

Handling Complex Number Output Arguments
For complex variables returned by a Fortran function, do the following:

1 When allocating storage for the variable, allocate a real variable with twice
as much space as you would for a variable of the same size. Do this because
the returned variable uses the Fortran format, which takes twice the space.
See the allocation of zout in the example.

2 Use the fort2mat function to make the variable compatible with MATLAB.

Calling LAPACK and BLAS Functions from MEX-Files

Example — Passing Complex Variables

This example shows how to call a function, passing complex prhs[0] as input
and receiving complex plhs[0] as output. Temporary variables zin and zout
contain the input and output values in Fortran format. To see the example,
open the file in MATLAB Editor. To create the MEX-file, copy the source

file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook',
'matrixDivideComplex.c'), fullfile('c:', 'work'));

To build the file on a Windows platform, type:

lapacklib = fullfile(matlabroot,

'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

fortfile = fullfile(matlabroot, 'extern', 'examples',
'refbook', 'fort.c');

fortheaderdir = fullfile(matlabroot, 'extern', 'examples',
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir],

'matrixDivideComplex.c', fortfile, lapacklib)

To build on a UNIX platform, type:

fortfile = fullfile(matlabroot, 'extern', 'examples',
'refbook', 'fort.c');
fortheaderdir = fullfile(matlabroot, 'extern', 'examples',
'refbook');
mex('-v', '-largeArrayDims', ['-I' fortheaderdir],
'matrixDivideComplex.c', fortfile, '-1lmwlapack')
To test:

Areal = [1 2; 3 4];

Aimag [1 1; 0 0];

Breal [5; 6];

Bimag = [0; O];

Acomplex = complex(Areal,Aimag);

Bcomplex = complex(Breal,Bimag);

X = matrixDivideComplex (Acomplex,Bcomplex)

MATLAB displays:

3-73

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-74

X =
-4.4000 + 0.80001
4.8000 - 0.60001

Example — Symmetric Indefinite Factorization Using LAPACK

The example utdu_slv.c calls LAPACK functions zhesvx and dsysvx. To see
the example, open the file in MATLAB Editor. To create the MEX-file, copy
the source file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook',
‘utdu_slv.c'), fullfile('c:', 'work'));

To build the file on Windows, type:

lapacklib = fullfile(matlabroot,

'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');
fortheaderdir = fullfile(matlabroot, 'extern', 'examples',
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir],
'utdu_slv.c', fortfile, lapacklib)

To build on a UNIX platform, type:
mex -v utdu_slv.c -lmwlapack

Modifying the Function Name on UNIX Systems

Add an underscore character following the function name when calling
LAPACK or BLAS functions on a UNIX system. For example, to call dgemm,
use:

dgemm_(argi, arg2, ..., argn);

Or add these lines to your source code:

#if !defined(_WIN32)
#define dgemm dgemm_
#endif

Running MEX-Files with .DLL File Extensions on Windows 32-bit Platforms

Running MEX-Files with .DLL File Extensions on Windows
32-bit Platforms

A MEX-file is a shared library dynamically loaded at runtime. Shared
libraries are sometimes called .d11 files, for dynamically-linked library.
MEX-files have a platform-dependent extension, which the mex function
automatically assigns.

On 32-bit Windows platforms, the extension is .mexw32. MATLAB has
supported .d11 as a secondary MEX-file extension since Version 7.1 (R14SP3).
In Version 7.7 (R2008b), if you used the -output switch to create a MEX-file
with a .d11 extension, MATLAB displayed a warning message that such
usage 1s being phased out.

In MATLAB Version 7.10 (R2010a), you can no longer create a MEX-file with
a .d11 file extension. If you try to, MATLAB creates the MEX-file with the
proper extension and displays the following warning:

Warning: Output file was specified with file extension, ".dll", which
is not a proper MEX-file extension. The proper extension for
this platform, ".mexw32", will be used instead.

MATLAB continues to execute a MEX-file with a .d11 extension, but future
versions of MATLAB will not support this extension.

3-75

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-76

Upgrading MEX-Files to Use 64-Bit API

In this section...

“MATLAB Support for 64-Bit Indexing” on page 3-76

“What Happens in the Next Release?” on page 3-77

“What If I Don’t Upgrade?” on page 3-78

“How to Upgrade MEX-Files to Use the 64-Bit API” on page 3-80

MATLAB Support for 64-Bit Indexing

MATLAB added support for 64-bit indexing in Version 7.3 (R2006b). This
means you can create variables with up to 2748-1 elements on 64-bit
platforms. Before Version 7.3, size values, such as array dimensions, used
by functions in the C/C++ and Fortran API Reference were limited to int in
C/C++ and INTEGER*4 in Fortran (2737-1 elements). Simply building and
running MEX-files on a 64-bit platform does not guarantee you access to
the additional address space. You must update your MEX source code to
take advantage of this functionality.

The following changes to the MX Matrix Library support 64-bit indexing:

® New types mwSize and mwIndex added to enable large sized data.

® Functions in MX Matrix Library updated to use mwSize and mwIndex
for inputs and outputs. These functions are called the 64-bit API, or
large-array-handling API.

¢ New flag -largeArrayDims added to mex build command to use the 64-bit
APL

To help you transition your MEX-files to the 64-bit API, MATLAB maintains
an interface, or compatibility layer. The -compatibleArrayDims flag for
building MEX-files uses this interface.

Upgrading MEX-Files to Use 64-Bit API

What Happens in the Next Release?

Can | Run Existing Binary MEX-Files?

In the next release of MATLAB, you can run existing binary MEX-files that
have not been upgraded to use the 64-bit API. However, there might be
unrelated incompatibilities that prevent executing an existing MEX-file. If
your MEX-file does not execute properly, review the MEX Compatibility
Considerations topics. The release notes has a “ Compatibility Summary
for MATLAB Software”. To find MEX topics, check the External Interfaces
section for each relevant version.

Must | Update Source MEX-Files on 64-Bit Platforms?

In the next release of MATLAB, the default mex build option will change to
use the -largeArrayDims flag. Building with this flag means mex uses the
64-bit API.

If you build MEX-files on 64-bit platforms or write platform-independent
applications, you must upgrade your MEX-files in order to use the next
version of MATLAB. To upgrade, review your source code, make appropriate
changes, and rebuild, using the mex command.

Previous versions of the External Interfaces release notes provide instructions
for updating your MEX-files. What action you take now depends on whether
your MEX-files currently use the 64-bit API. The following table helps you
identify your next actions.

State of Your Source Code Next Action

I do not plan to update my code. You have chosen to opt-out
and you must build using the
-compatibleArrayDims flag.

I want to update my code. Where do | See “How to Upgrade MEX-Files to

I start? Use the 64-Bit API” on page 3-80.

I use MEX-files but do not have Ask the owner of the source code to

access to the source code. follow the steps in “How to Upgrade
MEX-Files to Use the 64-Bit API” on
page 3-80.

3-77

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-78

State of Your Source Code Next Action

I use third-party libraries. Ask the vendor if the libraries
support 64-bit indexing. If not,
you cannot use these libraries
to create 64-bit MEX-files.
Build your MEX-file using the
-compatibleArrayDims flag.

If the libraries support 64-bit
indexing, review your source code,
following the steps in “How to
Upgrade MEX-Files to Use the
64-Bit API” on page 3-80, and test.

I updated my code in a previous Review your source code, following
release. the steps in “How to Upgrade
MEX-Files to Use the 64-Bit API” on
page 3-80, and test.

Must | Update Source MEX-Files on 32-Bit Platforms?

There are no changes to building 32-bit MEX-files in the next release of
MATLAB. However, in a future version of MATLAB, the compatibility layer,
with the -compatibleArrayDims flag, might be unsupported and you will
then need to upgrade your MEX-files.

If you build MEX-files exclusively on 32-bit platforms but want to write
platform-independent code, you can still upgrade your code. If possible, build
on a 64-bit system to validate your changes.

What If | Don’t Upgrade?

On 32-bit platforms, you do not need to make any changes in order to build
MEX-files with the next version of MATLAB.

On 64-bit platforms, you can build MEX-files with the next version of
MATLAB by using the -compatibleArrayDims flag.

Upgrading MEX-Files to Use 64-Bit API

On 64-bit platforms, if you do not update your source files and you build
without the -compatibleArrayDims flag, the results are unpredictable. One
or more of the following might occur:

® Increased compiler warnings and/or errors from your native compiler

e Runtime errors

* Wrong answers

3-79

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

How to Upgrade MEX-Files to Use the 64-Bit API

Use the following checklist to review and update MEX-file source code.

1 Before editing your code, “Back Up Files and Create Tests” on page 3-80.
2 Iteratively change and test code.

Before building your MEX-files with the 64-bit API, refactor your existing
code by checking for the following conditions:

a “Update Variables” on page 3-81.
b “Replace Unsupported Functions” on page 3-84.

¢ If necessary, “Update Fortran Source Code” on page 3-86.

After each change, build and test your code:
¢ Build with the 32-bit API. For example, to build myMexFile.c, type:

mex -compatibleArrayDims myMexFile.c

i

e “Test, Debug, and Resolve Differences After Each Refactoring Iteration’
on page 3-84.

3 Compile using the 64-bit API. To build myMexFile.c, type:
mex -largeArrayDims myMexFile.c
4 “Resolve -largeArrayDims Build Failures and Warnings” on page 3-85.

5 “Execute 64-Bit MEX-File and Compare Results with 32-Bit Version” on
page 3-85.

6 “Experiment with Large Arrays” on page 3-85.

The following procedures use C/C++ terminology and example code. Fortran
MEX-files share the same issues, with additional tasks described in “Update
Fortran Source Code” on page 3-86.

Back Up Files and Create Tests

Before adapting your code to handle large arrays, verify the MEX-file works
with the traditional 32-bit array dimensions. At a minimum, build a list

3-80

Upgrading MEX-Files to Use 64-Bit API

of expected inputs and outputs, or create a full test suite. Use these tests
to compare the results with the upgraded source code. The results should
be identical.

Back up all source, binary, and test files.

Update Variables

In order to handle large arrays, convert variables containing array indices
or sizes to use the mwSize and mwIndex types instead of the 32-bit int type.
Review your code to see if it contains the following types of variables:

e Variables used directly by the MX Matrix Library functions — see “Update
Arguments Used to Call Functions in the 64-Bit API” on page 3-81

® Intermediate variables — see “Update Variables Used for Array Indices
and Sizes” on page 3-82

e Variables used as both size / index values and as 32-bit integers — see
“Analyze Other Variables” on page 3-82

Update Arguments Used to Call Functions in the 64-Bit API

Identify the 64-bit API functions in your code. For the list of functions, see
“Using the 64-Bit API” on page 4-37. Search for the variables you use to

call the functions. Check the function signature, shown under the Syntax
heading on the function reference page. The signature identifies the variables
that take mwSize / mwIndex values as input or output values. Change your
variables to use the correct type.

For example, your code uses the mxCreateDoubleMatrix function, as shown
in the following statements:

int nrows,ncolumns;
y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

To see the function signature, type:

doc mxCreateDoubleMatrix

The signature is:mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

3-81

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-82

mxComplexity ComplexFlag)

The type for input arguments m and n is mwSize. Change your code as shown
in the following table.

Replace: With:

int nrows,ncolumns; mwSize nrows,ncolumns;

Update Variables Used for Array Indices and Sizes

If your code uses intermediate variables to calculate size and index values,
use mwSize / mwIndex for these variables, too. For example, the following code
declares the inputs to mxCreateDoubleMatrix as type mwSize:

mwSize nrows,ncolumns; /* inputs to mxCreateDoubleMatrix */
int numDataPoints;

nrows = 3;

numDataPoints = nrows * 2;

ncolumns = numDataPoints + 1;

y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

This example uses the intermediate variable numDataPoints (of type int)
to calculate the value of ncolumns. If you copy a 64-bit value from nrows
into the 32-bit variable numDataPoints, the resulting value is truncated.
Your MEX-file might crash or produce incorrect results. Use type mwSize for
numDataPoints, as shown in the following table.

Replace: With:

int numDataPoints; mwSize numDataPoints;

Analyze Other Variables

You do not need to change every integer variable in your code. For example,
field numbers in structures and status codes are of type int. However,

Upgrading MEX-Files to Use 64-Bit API

variables used for multiple purposes need to be identified and, if necessary,
replaced with multiple variables.

The following example creates a matrix myNumeric and a structure myStruct,
based on the number of sensors. The code uses one variable, numSensors, for
both the size of the array and the number of fields in the structure.

mxArray *myNumeric, *myStruct;
int numSensors;

mwSize m, n;

char **fieldnames;

myNumeric = mxCreateDoubleMatrix (numSensors, n, mxREAL);
myStruct = mxCreateStructMatrix(m, n, numSensors, fieldnames);

The function signatures for mxCreateDoubleMatrix and
mxCreateStructMatrix are:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,
mxComplexity ComplexFlag)

mxArray *mxCreateStructMatrix(mwSize m, mwSize n,
int nfields, const char **fieldnames);

For the mxCreateDoubleMatrix function, your code uses numSensors for the
variable m. The type for m is mwSize. For the mxCreateStructMatrix function,
your code uses numSensors for the variable nfields. The type for nfields
is int. Replace numSensors with two new variables to properly handle both
functions, as shown in the following table.

Replace: With:

int numSensors; /* create 2 variables */
/* of different types */
mwSize numSensorSize;

int numSensorFields;

myNumeric = /* use mwSize variable */
mxCreateDoubleMatrix(/* numSensorSize */
numSensors, myNumeric =

3-83

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-84

Replace: With:

n, mxREAL); mxCreateDoubleMatrix(
numSensorSize,
n, mxREAL);

myStruct = /* use int variable */

mxCreateStructMatrix(/* numSensorFields */

m, n, myStruct =

numSensors, mxCreateStructMatrix(

fieldnames); m, n,
numSensorFields,
fieldnames);

Replace Unsupported Functions

While updating older MEX-files, you might find calls to unsupported functions
such as mxCreateFull, mxGetName, or mxIsString. MATLAB removed support
for these functions in Version 7.1 (R14SP3). You cannot use them with 64-bit
array dimensions. For the list of unsupported functions and the recommended
replacements, see “Obsolete Functions No Longer Documented”.

Update your code to use an equivalent function, if available. For example, use
mxCreateDoubleMatrix instead of mxCreateFull

Test, Debug, and Resolve Differences After Each Refactoring
Iteration
To build myMexFile.c with the 32-bit API, type:

mex -compatibleArrayDims myMexFile.c

Use the tests you created at the beginning of this process to compare

the results of your updated MEX-file with your original binary file. Both
MEX-files should return identical results. If not, debug and resolve any
differences. Differences are easier to resolve now than when you build using
the 64-bit API.

Upgrading MEX-Files to Use 64-Bit API

Resolve -largeArrayDims Build Failures and Warnings

After reviewing and updating your code, compile your MEX-file using the
large array handling API. To build myMexFile.c with the 64-bit API, type:

mex -largeArrayDims myMexFile.c

Since mwSize / mwIndex types are MATLAB types, your compiler might refer
to them as size_t, unsigned_int64, or other similar names.

Most build problems are related to type mismatches between 32- and 64-bit
types. Step 5 in the Technical Support solution 1-5C27B9 identifies common
build problems for specific compilers and possible solutions.

Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version

Compare the results of running your MEX-file compiled with the 64-bit API
with the results from your original binary. If there are any differences or
failures, use a debugger to investigate the cause. You can find step-by-step
instructions for using specific debuggers with your MEX-file in Technical
Note 1605. For information on the capabilities of your debugger, refer to
your compiler documentation.

Step 6 in the Technical Support solution 1-5C27B9 identifies issues you might
encounter when running your MEX-files and possible solutions.

After resolving issues, your upgraded MEX-file now replicates the
functionality of your original code while using the large array handling API.

Experiment with Large Arrays

If you have access to a machine with large amounts of memory, you can
experiment with large arrays. An array of double-precision floating point
numbers (the default in MATLAB) with 232 elements takes approximately
32 GB of memory.

For an example that demonstrates the use of large arrays, see the
arraySize.c MEX-file in “Handling Large mxArrays” on page 4-37.

3-85

http://www.mathworks.com/support/solutions/data/1-5C27B9.html?solution=1-5C27B9
http://www.mathworks.com/support/tech-notes/1600/1605.html
http://www.mathworks.com/support/tech-notes/1600/1605.html
http://www.mathworks.com/support/solutions/data/1-5C27B9.html?solution=1-5C27B9

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

3-86

Update Fortran Source Code

All of the previous information applies to Fortran as well as C/C++.
Fortran uses similar API signatures, identical mwSize / mwIndex types, and
similar compilers and debuggers. To make your Fortran source code 64-bit
compatible, follow these additional steps:

e “Use Fortran API Header File” on page 3-86

e “Declare Fortran Pointers” on page 3-86

e “Require Fortran Type Declarations” on page 3-87
e “Use Variables in Function Calls” on page 3-87

® “Manage Reduced Fortran Compiler Warnings” on page 3-88

Use Fortran APl Header File. To make your Fortran MEX-file compatible
with the 64-bit API, use the fintrf.h header file in your Fortran source
files. Name your source files with an uppercase .F file extension. For more
information about these requirements, see “The Components of a Fortran
MEX-File” on page 5-2.

Declare Fortran Pointers. Pointers need to be 32- or 64-bit addresses
based on machine type. This is not directly tied to array dimensions, but you
might encounter this when moving 32-bit code to 64-bit machines as part of
this conversion.

For more information, see “Preprocessor Macros” on page 5-5 and the
mwPointer reference page.

The C/C++ compiler automatically handles pointer size. In Fortran,
MATLAB uses the mwPointer type to handle this difference. For example,
mxCreateDoubleMatrix returns an mwPointer:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Upgrading MEX-Files to Use 64-Bit API

Require Fortran Type Declarations. Fortran uses implicit type definitions.
This means undeclared variables starting with letters I through N are
implicitly declared type INTEGER. Variable names starting with other letters
are implicitly declared type REAL*4. Using the implicit INTEGER type might
work for 32-bit indices, but is not safe for large array dimension MEX-files.
Add the IMPLICIT NONE statement to your Fortran subroutines to force you to
declare all variables. For example:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
implicit none

This statement helps identify 32-bit integers used in your code that do not
have explicit type declarations. You can then declare them as INTEGER*4 or
mwSize / mwIndex, as appropriate. For more information on IMPLICIT NONE,
refer to your Fortran compiler documentation.

Use Variables in Function Calls. If you use a number as an argument
to a function, your Fortran compiler might assign it an incorrect type. On
a 64-bit platform, this can produce Out of Memory errors, segmentation
violations, or incorrect results. For example, the argument types for the
mxCreateDoubleMatrix function are defined as follows:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Suppose you have a C/C++ MEX-file with the following statement:

myArray = mxCreateDoubleMatrix(2, 3, mxREAL);

Most C/C++ compilers interpret the number 2 as a 64-bit value. Some Fortran
compilers cannot detect this requirement, and supply a 32-bit value. For
example, an equivalent Fortran statement is:

myArray = mxCreateDoubleMatrix(2, 3, 0)

The compiler interprets the value of the ComplexFlag argument 0 correctly as
type INTEGER*4. However, the compiler might interpret the argument 2 as a
32-bit value, even though the argument m is declared type mwSize.

3-87

3 Calling C/C++ and Fortran Programs from MATLAB® Command Line

A compiler-independent solution to this problem is to declare and use an
mwSize / mwIndex variable instead of a literal value. For example, the

following statements unambiguously call the mxCreateDoubleMatrix function
in Fortran:

mwSize nrows, ncols
INTEGER*4 flag

nrows = 2
ncols = 3
flag = 0

myArray = mxCreateDoubleMatrix(nrows, ncols, flag)

Manage Reduced Fortran Compiler Warnings. Some Fortran compilers
cannot detect as many type mismatches as similar C/C++ compilers. This
might complicate the step “Resolve -largeArrayDims Build Failures and
Warnings” on page 3-85 in particular, and will leave more issues to find with
your debugger in step “Execute 64-Bit MEX-File and Compare Results with
32-Bit Version” on page 3-85.

3-88

Creating C/C++ Language
MEX-Files

e “C/C++ Source MEX-Files” on page 4-2

¢ “Examples of C/C++ Source MEX-Files” on page 4-11
® “Debugging C/C++ Language MEX-Files” on page 4-26
e “Handling Large mxArrays” on page 4-37

¢ “Memory Management” on page 4-41

e “Large File I/0” on page 4-45

4 Creating C/C++ Language MEX-Files

C/C++ Source MEX-Files

In this section...

“The Components of a C/C++ MEX-File” on page 4-2
“Gateway Routine” on page 4-2

“Computational Routine” on page 4-5

“Preprocessor Macros” on page 4-5

“Data Flow in MEX-Files” on page 4-5

“Creating C++ MEX-Files” on page 4-9

The Components of a C/C++ MEX-File

You create binary MEX-files using the mex build script. mex compiles and
links source files into a shared library called a binary MEX-file, which you
can run at the MATLAB command line. Once compiled, you treat binary

MEX-files like MATLAB functions.

This section explains the components of a source MEX-file, statements you
use in a program source file. Unless otherwise specified, the term "MEX-file”

refers to a source file.

The MEX-file consists of:

* A “Gateway Routine” on page 4-2 that interfaces C/C++ and MATLAB data.

* A “Computational Routine” on page 4-5 written in C/C++ that performs the
computations you want implemented in the binary MEX-file.

e “Preprocessor Macros” on page 4-5 for building platform-independent code.

Gateway Routine

The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guidelines to create a gateway routine:

¢ “Naming the Gateway Routine” on page 4-3

C/C++ Source MEX-Files

® “Required Parameters” on page 4-3

e “Creating and Using Source Files” on page 4-4
e “Using MATLAB Libraries” on page 4-4

e “Required Header Files” on page 4-4

e “Naming the MEX-File” on page 4-4

The following is a sample C/C++ MEX-file gateway routine:

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

/* more C/C++ code ... */

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters

A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
described in the following table.

Parameter | Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs
array.

Declare prhs and plhs as type mxArray *, which means they point to
MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

4 Creating C/C++ Language MEX-Files

4-4

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

Creating and Using Source Files

It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-5; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, you can combine them into one source file or into separate files. If
you use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 4-4.

Using MATLAB Libraries

The MATLAB C/C++ and Fortran API Reference describes functions you can
use in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The MX Matrix Library
functions provide access methods for manipulating MATLAB arrays. The
MEX Library functions perform operations in the MATLAB environment.

Required Header Files

To use the functions in the C/C++ and Fortran API Reference library you
must include the mex header, which declares the entry point and interface
routines. Put this statement in your source file:

#include "mex.h"

Naming the MEX-File

The binary MEX-file name, and hence the name of the function you use in
MATLAB, is the name of the source file containing your gateway routine.

The file extension of the binary MEX-file is platform-dependent. You find
the file extension using the mexext function, which returns the value for
the current machine.

C/C++ Source MEX-Files

Computational Routine

The computational routine contains the code for performing the computations
you want implemented in the binary MEX-file. Computations can be
numerical computations as well as inputting and outputting data. The
gateway calls the computational routine as a subroutine.

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 might also apply to your computational routine.

Preprocessor Macros

The MX Matrix and MEX libraries use the MATLAB preprocessor macros
mwSize and mwIndex for cross-platform flexibility. mwSize represents
size values, such as array dimensions and number of elements. mwIndex
represents index values, such as indices into arrays.

Data Flow in MEX-Files

The following examples illustrate data flow in MEX-files:

e “Showing Data Input and Output” on page 4-5
* “Gateway Routine Data Flow Diagram” on page 4-6

e “MATLAB Example yprime.c” on page 4-7

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one
output argument. The MATLAB syntax is [X] = myFunction(Y, Z).To
call myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

4 Creating C/C++ Language MEX-Files

4-6

nlhs =1

nrhs = 2

plhs > & > @

prhs > & >
o —>Z

Your input is prhs, a two-element array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element
is a null pointer. The parameter plhs points at nothing because the output X
1s not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If the routine does not assign a value to plhs[0] but you assign an
output value to the function when you call it, MATLAB generates an error.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B).In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.c uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]
to the pointers to the newly created MATLAB arrays. It uses the mxGet*

C/C++ Source MEX-Files

functions to extract your data from your input arguments prhs[0] and
prhs[0]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

Inputs
MATLAB - pA —
const mxArray
A call to —
MEX-file func: prhs(1]

[C,D]=func(A,B)

const mxArray *A

tells MATLAB to > A = prhs[0] —
pass variables A and

B to your MEX-file.

C and D are left

unassigned. func.c

void mexFunction(
int nlhs, mxArray *plhs[]
int nr‘hs, const mxArray prhs[])

In the gateway routine:

® Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs[0],[1],
to the pointers to the newly created
MATLAB arrays.

e Use the mxGet functions to extract
your data from prhs[0],[1],....

e Call your C subroutine passing the
input and output data pointers as
function parameters.

MATLAB
On return from mxarray *D
MEX-file func: D = plhs[1]

[C,D]=func(A,B)
mxarray *C

plhs[0] is assigned - —
foCandplhsii]is |¢ | ¢ = PihsloO]
assigned to D.

Outputs

-
C/C++ MEX Cycle

MATLAB Example yprime.c

Look at the example, yprime.c, found in your
matlabroot/extern/examples/mex/ folder. (“Building MEX-Files” on page
3-23 explains how to create the binary MEX-file.) Its calling syntax is [YP]
= YPRIME(T,Y), where T is an integer and Y is a vector with four elements.
For T=1 and Y=1:4, when you type:

4 Creating C/C++ Language MEX-Files

4-8

yprime(T,Y)

MATLAB displays:

ans =
2.0000 8.9685 4.0000 -1.0947

The gateway routine validates the input arguments. This step includes
checking the number, type, and size of the input arrays as well as
examining the number of output arrays. If the inputs are not valid, call
mexErrMsgIdAndTxt. For example:

/* Check for proper number of arguments */

if (nrhs != 2) {

mexErrMsgTxt ("Two input arguments required.");
} else if (nlhs > 1) {

mexErrMsgTxt ("Too many output arguments.");

}

/* Check the dimensions of Y. Y can be 4 X 1 or 1 X 4. */
m = mxGetM(Y_IN);
n = mxGetN(Y_IN);
if (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||

(MAX(m,n) 1= 4) || (MIN(m,n) != 1)) {
mexErrMsgTxt ("YPRIME requires that Y be a 4 x 1 vector.");
}

To create MATLAB arrays, call one of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example:

/* Create a matrix for the return argument */
plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);

In the gateway routine, you access the data in mxArray and manipulate

it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the
mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in C/C++. For example:

C/C++ Source MEX-Files

/* Assign pointers to the various parameters */
yp = mxGetPr(plhs[0]);

In this example, a computational routine, yprime, performs the calculations:

/* Do the actual computations in a subroutine */
yprime(yp,t,y);

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the binary MEX-file.

When a binary MEX-file completes its task, it returns control to MATLAB.
MATLAB automatically destroys any arrays created by the MEX-file not
returned through the left-hand side arguments.

In general, we recommend that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is
more efficient to perform this cleanup in the source MEX-file than to rely on
the automatic mechanism.

Creating C++ MEX-Files

MEX-files support all C++ language standards.

This section discusses specific C++ language issues to consider when creating
and using MEX-files.

Creating Your C++ Source File

The C++ source code for the examples provided by MATLAB use the .cpp file
extension. The extension .cpp is unambiguous and generally recognized by
C++ compilers. Other possible extensions include .C, .cc, and .cxx.

For information on using C++ features, see

Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html. Look
for the sections under the “C++ Mex-files” heading.

4-9

http://www.mathworks.com/support/tech-notes/1600/1605.html

4 Creating C/C++ Language MEX-Files

4-10

Compiling and Linking
You can run a C++ MEX-file only on systems with the same version of
MATLAB that the file was compiled on.

Use mex -setup to select a C++ compiler, then type:

mex filename.cpp

You can use command-line options, as shown in the “MEX Script Switches” on
page 3-49 table.

Your link command must have all the necessary DLL files that the
MEX-function is dependent upon. To help you check for dependent files, see
the Troubleshooting topic “DLL Files Not on Path on Microsoft Windows
Systems” on page 3-36.

Examples

The examples “Using C++ Features in MEX-Files” on page 4-23 and “File
Handling with C++” on page 4-24 illustrate the use of C++ by walking through
source code examples available in your MATLAB folder.

Memory Considerations For Class Destructors

Do not use the mxFree or mxDestroyArray functions in a C++ destructor

of a class used in a MEX-function. If the MEX-function throws an error,
MATLAB cleans up MEX-file variables, as described in “Automatic Cleanup
of Temporary Arrays” on page 4-41.

If an error occurs that causes the object to go out of scope, MATLAB calls
the C++ destructor. Freeing memory directly in the destructor means both
MATLAB and the destructor free the same memory, which can corrupt
memory.

Use mexPrintf to Print to the MATLAB Command Window

Using cout or the C-language printf function does not work as expected in
C++ MEX-files. Use the mexPrintf function instead.

Examples of C/C++ Source MEX-Files

Examples of C/C++ Source MEX-Files

In this section...

“Introduction to C/C++ Examples” on page 4-11
“Passing a Scalar” on page 4-12

“Passing Strings” on page 4-13

“Passing Two or More Inputs or Outputs” on page 4-14
“Passing Structures and Cell Arrays” on page 4-15
“Filling an mxArray” on page 4-17

“Prompting User for Input” on page 4-17

“Handling Complex Data” on page 4-18

“Handling 8-, 16-, and 32-Bit Data” on page 4-19
“Manipulating Multidimensional Numerical Arrays” on page 4-20
“Handling Sparse Arrays” on page 4-21

“Calling Functions from C/C++ MEX-Files” on page 4-22
“Using C++ Features in MEX-Files” on page 4-23

“File Handling with C++” on page 4-24

Introduction to C/C++ Examples

The MATLAB C/C++ and Fortran API Reference provides a full set of
routines that handle the types supported by MATLAB. For each data type
there is a specific set of functions that you can use for data manipulation. The
first example discusses the simple case of doubling a scalar. After that, the
examples discuss how to pass in, manipulate, and pass back various data
types, and how to handle multiple inputs and outputs. Finally, the sections
discuss passing and manipulating various MATLAB types.

Source code for the examples in this section are in the
matlabroot/extern/examples/refbook folder. To build these

examples, make sure that you have a C/C++ compiler selected using the mex
-setup command. Then at the MATLAB command prompt, type:

4-11

4 Creating C/C++ Language MEX-Files

4-12

mex filename.C
where filename is the name of the example.

The matlabroot/extern/examples/refbook folder contains the MEX-file
examples (C, C++, and Fortran) that are used in this topic. The following
topics look at source code for the examples. Unless otherwise specified, the
term "MEX-file” refers to a source file.

Passing a Scalar

Look at a simple example of C code and its MEX-file equivalent. This
computational function takes a scalar and doubles it:

#include <math.h>
void timestwo(double y[], double x[])

{
y[0] = 2.0*x[0];
return;

}

To see the same function written in the MEX-file format (timestwo.c), open
the file in MATLAB Editor.

In C/C++, the compiler checks function arguments. In MATLAB, you can
pass any number or type of arguments to a function, which is responsible for
argument checking. This is also true for MEX-files. Your program must safely
handle any number of input or output arguments of any supported type.

To compile and link this example, at the MATLAB prompt, type:

mex timestwo.c

MATLAB creates the binary MEX-file called timestwo with an extension
corresponding to the platform on which you are running. You can now call
timestwo like a MATLAB function:

X = 2;
y timestwo (x)
y:

4

Examples of C/C++ Source MEX-Files

You can create and compile MEX-files in MATLAB or at your operating system
prompt. MATLAB uses the mex.m file. The Microsoft Windows operating
system uses the mex.bat file, and UNIX uses the mex. sh file. Typing:

mex filename

at either prompt produces a compiled version of your MEX-file.

The previous example views scalars as 1-by-1 matrices. Alternatively, you
can use a special API function called mxGetScalar that returns the values of
scalars instead of pointers to copies of scalar variables (timestwoalt.c). To
see the alternative code (error checking has been omitted for brevity), open
the file in MATLAB Editor.

This example passes the input scalar x by value into the timestwo_alt
subroutine, but passes the output scalar y by reference.

Passing Strings
You can pass any MATLAB type to and from MEX-files. The example

revord.c accepts a string and returns the characters in reverse order. To see
the example, open the file in MATLAB Editor.

In this example, the API function mxCalloc replaces calloc, the standard
C/C++ function for dynamic memory allocation. mxCalloc allocates dynamic
memory using the MATLAB memory manager and initializes it to zero. Use
mxCalloc in any situation where C/C++ would require the use of calloc. The
same is true for mxMalloc and mxRealloc; use mxMalloc in any situation
where C/C++ would require the use of malloc and use mxRealloc where
C/C++ would require realloc.

Note MATLAB automatically frees up memory allocated with the MX Matrix
Library allocation routines (mxCalloc, mxMalloc, mxRealloc) upon exiting
your MEX-file. If you do not want to free this memory, use the API function
mexMakeMemoryPersistent.

The gateway routine mexFunction allocates memory for the input and output
strings. Since these are C-style strings, they need to be one greater than

4-13

4 Creating C/C++ Language MEX-Files

4-14

the number of elements in the MATLAB string. Next, the MATLAB string

1s copied to the input string. Both the input and output strings are passed

to the computational subroutine (revord), which loads the output in reverse
order. The output buffer is a valid null-terminated C string because mxCalloc
initializes the memory to 0. The API function mxCreateString then creates
a MATLAB string from the C string, output_buf. Finally, plhs[0], the
left-hand side return argument to MATLAB, is set to the MATLAB array
you just created.

By isolating variables of type mxArray from the computational subroutine,
you can avoid having to make significant changes to your original C/C++ code.

To build this example, at the command prompt type:

mex revord.c

Type:
X = 'hello world';
y = revord(x)

MATLAB displays:

y:
dlrow olleh

Passing Two or More Inputs or Outputs

The plhs[] and prhs[] parameters are vectors that contain pointers to each
left-hand side (output) variable and each right-hand side (input) variable,
respectively. Accordingly, plhs[0] contains a pointer to the first left-hand
side argument, plhs[1] contains a pointer to the second left-hand side
argument, and so on. Likewise, prhs[0] contains a pointer to the first
right-hand side argument, prhs[1] points to the second, and so on.

This example, xtimesy, multiplies an input scalar by an input scalar or
matrix and outputs a matrix.

To build this example, at the command prompt type:

mex xtimesy.c

Examples of C/C++ Source MEX-Files

Use xtimesy with two scalars:

X = 7;
y =7;
z = xtimesy(x,Yy)

MATLAB displays:

Z=
49

Use xtimesy with a scalar and a matrix:

X = 9;
y = ones(3);
z = xtimesy(x,y)

MATLAB displays:

Z:
9 9 9
9 9 9
9 9 9

To see the corresponding MEX-file C code xtimesy.c, open the file in
MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. You must match the indices of the
prhs and plhs vectors with the input and output arguments of your function.
In the example above, the input variable x corresponds to prhs[0] and the
input variable y to prhs[1].

The mxGetScalar function returns the value of x, rather than a pointer to x.
This is just an alternative way of handling scalars. You could treat x as a
1-by-1 matrix and use mxGetPr to return a pointer to x.

Passing Structures and Cell Arrays

Passing “Structures” and “Cell Arrays” into MEX-files is just like passing
any other data types, except the data itself is of type mxArray. In practice,

4-15

4 Creating C/C++ Language MEX-Files

this means that mxGetField (for structures) and mxGetCell (for cell arrays)
return pointers of type mxArray. You can then treat the pointers like any
other pointers of type mxArray, but if you want to pass the data contained
in the mxArray to a C/C++ routine, you must use an API function such as
mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new
1-by-1 structure that contains these fields:

® String input generates an m-by-n cell array

e Numeric input (noncomplex, scalar values) generates an m-by-n vector of
numbers with the same class ID as the input, for example, int, double,
and so on.

To see the program phonebook.c, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex phonebook.c

To see how this program works, enter this structure:

friends(1).name = 'Jordan Robert';
friends(1).phone = 3386;
friends(2).name = 'Mary Smith';
friends(2).phone = 3912;
friends(3).name = 'Stacy Flora';
friends(3).phone = 3238;
friends(4).name = 'Harry Alpert';
friends(4).phone = 3077;

The results of this input are:

phonebook (friends)
ans =

name: {1x4 cell }
phone: [3386 3912 3238 3077]

4-16

Examples of C/C++ Source MEX-Files

Filling an mxArray

You can move data from a C/C++ program into an mxArray using the

MX Matrix Library. The functions you use depend on the type of data in
your application. Use the mxSetPr and mxGetPr functions for data of type
double. For numeric data other than double, use the mxSetData function.
For nonnumeric data, see the examples on the mxCreateString function
reference page.

The following examples use a variable data to represent data from

a computational routine (described in “The Components of a C/C++
MEX-File” on page 4-2). Each example creates an mxArray using the
mxCreateNumericMatrix function, fills it with data, and returns it as the
output argument plhs[0].

These examples use real data only. If you have complex data, use the mxGetPi
and mxSetPi functions as needed.

Copying Data Directly into an mxArray

The arrayFillGetPr.c example uses the mxGetPr function to copy the values
from data to plhs[0]. To see the example, open the file in MATLAB Editor.

Pointing to Data

The arrayFillSetPr.c example uses the mxSetPr function to point plhs[0]
to data. To see the example, open the file in MATLAB Editor.

The example arrayFillSetData.c illustrates how to fill an mxArray for
numeric types other than double. To see the example, open the file in
MATLAB Editor.

Prompting User for Input

Because MATLAB does not use stdin and stdout, do not use C/C++ functions
like scanf and printf to prompt for user input. The following example
shows how to use mexCallMATLAB with the input function to get a number
from the user.

#include "mex.h"
#include "string.h"

4-17

4 Creating C/C++ Language MEX-Files

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
mxArray *new_number, *str;
double out;
str = mxCreateString("Enter extension: ");
mexCallMATLAB(1,&new_number,1,&str,"input");
out = mxGetScalar(new_number);
mexPrintf("You entered: %.0f ", out);
mxDestroyArray(new_number);
mxDestroyArray(str);
return;

}

Handling Complex Data

MATLAB separates complex data into real and imaginary parts. The
MATLAB API provides two functions, mxGetPr and mxGetPi, that return
pointers (of type double *) to the real and imaginary parts of your data.

This example, convec.c, takes two complex row vectors and convolves them.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.cC

Entering these numbers at the MATLAB prompt:

X
y

[3.000 - 1.000i, 4.000 + 2.000i, 7.000 - 3.000i];
[8.000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];

and invoking the new MEX-file:
Zz = convec(x,y)
results in:

z =
1.0e+02 *

4-18

Examples of C/C++ Source MEX-Files

Columns 1 through 4
0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i 3.7600 - 0.1200i
Column 5

1.5400 - 4.14001

which agrees with the results from the built-in MATLAB function conv.

Handling 8-, 16-, and 32-Bit Data

You can create and manipulate signed and unsigned 8-, 16-, and 32-bit data
from within your MEX-files. The MATLAB API provides a set of functions
that support these data types. The API function mxCreateNumericArray
constructs an unpopulated N-dimensional numeric array with a specified data
size. Refer to the entry for mxClassID in the online reference pages for a
discussion of how the MATLAB API represents these data types.

Once you have created an unpopulated MATLAB array of a specified data
type, you can access the data using mxGetData and mxGetImagData. These two
functions return pointers to the real and imaginary data. You can perform
arithmetic on data of 8-, 16-, or 32-bit precision in MEX-files and return the
result to MATLAB, which recognizes the correct data class.

The example, doubleelement.c, constructs a 2-by-2 matrix with unsigned
16-bit integers, doubles each element, and returns both matrices to MATLAB.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex doubleelement.c

At the MATLAB prompt, entering:

doubleelement

4-19

4 Creating C/C++ Language MEX-Files

4-20

produces:

ans =
2 6
4 8

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit
integers.

Manipulating Multidimensional Numerical Arrays

You can manipulate multidimensional numerical arrays by using mxGetData
and mxGetImagData. These functions return pointers to the real and
imaginary parts of the data stored in the original multidimensional array.
The example, findnz.c, takes an N-dimensional array of doubles and returns
the indices for the nonzero elements in the array. To see the example, open
the file in MATLAB Editor.

To build this example, at the command prompt type:
mex findnz.c

Entering a sample matrix at the MATLAB prompt gives:

matrix = [309 0; 082 4; 0924; 309 3; 99 20]
matrix

© WO ow
© O © oo
N O NN O
o whr~~O

This example determines the position of all nonzero elements in the matrix.
Running the MEX-file on this matrix produces:

Examples of C/C++ Source MEX-Files

nz = findnz(matrix)
nz

P OMNMNOAOPRON=2200ONOO D=
A AP OOWOWOWWONNONN = =2 =

Handling Sparse Arrays

The MATLAB API provides a set of functions that allow you to create and
manipulate sparse arrays from within your MEX-files. These API routines
access and manipulate ir and jc, two of the parameters associated with

sparse arrays. For more information on how MATLAB stores sparse arrays,
see “The MATLAB Array” on page 3-18.

The example, fulltosparse.c, illustrates how to populate a sparse matrix.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex fulltosparse.c

At the MATLAB prompt, entering:

full = eye(5)
full

O oOoOoOoo =1
(oMo o]
oo —- 0o
o =+ 0O O0O0o
- O O OO

4-21

4 Creating C/C++ Language MEX-Files

4-22

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

spar = fulltosparse(full)
spar

—
w
w
—_—— — — —
[G

Calling Functions from C/C++ MEX-Files

It 1s possible to call MATLAB functions, operators, user-defined functions,
and other binary MEX-files from within your C/C++ source code by using
the API function mexCallMATLAB. The example, sincall.c, creates an
mxArray, passes various pointers to a subfunction to acquire data, and calls
mexCallMATLAB to calculate the sine function and plot the results. To see the
example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex sincall.c

Running this example:

sincall

displays the results:

Examples of C/C++ Source MEX-Files

v Fiquea Hn 1 [_1r]x]

Lt Lot = woe |4

T o Bl AR | Il Ho 2l

Using C++ Features in MEX-Files

This example, mexcpp.cpp, illustrates how to use C++ code with your C
language MEX-file. It uses member functions, constructors, destructors, and
the iostream include file. To see the example, open the file in MATLAB
Editor.

To build this example, at the command prompt type:

mex mexcpp.cpp

The calling syntax is mexcpp (numi, num2).

The routine defines a class, MyData, with member functions display and
set_data, and variables v1 and v2. It constructs an object d of class MyData
and displays the initialized values of v1 and v2. It then sets v1 and v2 to
your input, num1 and num2, and displays the new values. Finally, the delete
operator cleans up the object.

4-23

4 Creating C/C++ Language MEX-Files

4-24

File Handling with C++

This example, mexatexit.cpp, illustrates C++ file handling features. To see
the C++ code, open the C++ file in MATLAB Editor. To compare it with a C
code example mexatexit.c, open this file in MATLAB Editor.

C Example

The C code example registers the mexAtExit function to perform cleanup
tasks (close the data file) when the MEX-file clears. This example prints a
message on the screen (using mexPrintf) when performing file operations
fopen, fprintf, and fclose

To build the MEX-file, type:
mex mexatexit.c
If you type:

X = 'my input string';
mexatexit(x)

MATLAB displays:

Opening file matlab.data.
Writing data to file.

To clear the MEX-file, type:

clear mexatexit

MATLAB displays:

Closing file matlab.data.

You can see the contents of matlab.data by typing:

type matlab.data

MATLAB displays:

my input string

Examples of C/C++ Source MEX-Files

C++ Example

The C++ example does not use the mexAtExit function. A fileresource class
handles the file open and close functions. The MEX-file calls the destructor
for this class (which closes the data file). This example also prints a message
on the screen when performing operations on the data file. However, in this
case, the only C file operation performed is the write operation, fprintf.

To build the mexatexit.cpp MEX-file, make sure that you have selected
a C++ compiler, then type:

mex mexatexit.cpp

If you type:

z = 'for the C++ MEX-file';
mexatexit(x)

mexatexit(z)

clear mexatexit

MATLAB displays:

Writing data to file.
Writing data to file.

To see the contents of matlab.data, type:

type matlab.data

MATLAB displays:

my input string
for the C++ MEX-file

4-25

4 Creating C/C++ Language MEX-Files

4-26

Debugging C/C++ Language MEX-Files

In this section...

“Notes on Debugging” on page 4-26
“Debugging on the Microsoft Windows Platforms” on page 4-26

“Debugging on Linux Platforms” on page 4-34

Notes on Debugging

The examples show how to debug yprime.c, found in your
matlabroot/extern/examples/mex/ folder.

Binary MEX-files built with the -g option do not execute on other computers
because they rely on files that are not distributed with MATLAB software.
Refer to the “Calling C/C++ and Fortran Programs from MATLAB” topic
“Troubleshooting MEX-Files” on page 3-35 for additional information on
isolating problems with MEX-files.

Debugging on the Microsoft Windows Platforms

The Microsoft® Visual Studio® development environment provides complete
source code debugging, including the ability to set breakpoints, examine
variables, and step through the source code line-by-line.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Debugging on Windows in Technical Note 1605,
MEX-files Guide.

Visual Studio 2005

This section describes how to debug using the default compiler, that is, the
compiler used to build MATLAB.

1 Select the Microsoft Visual C++ 2005 compiler. At the MATLAB prompt,
type:

mex -setup

http://www.mathworks.com/support/tech-notes/1600/1605.html#MSDEV

Debugging C/C++ Language MEX-Files

Type y to locate installed compilers, and then type the number
corresponding to this compiler.

2 Next, compile the source MEX-file with the -g option, which builds the file
with debugging symbols included. For example:

mex -g yprime.c

On a 32-bit platform, this command creates the executable file
yprime.mexw32.

3 Start Visual Studio®. Do not exit your MATLAB session.

4-27

4 Creating C/C++ Language MEX-Files

4-28

4 From the Visual Studio Tools menu, select Attach to Process...

% Start Page - Microsoft Yisual Studio

File

Edit Wiew

o

Ixu:lqpu:ll %l;ampﬁxg RN =T = J

Start Page

Tools | Window Community Help
Aktach to Process, . M Chrl+-Al+-P
g

Connect to Device, ..

Conneck ko Dakabase. .,

Connect to Server,..

Code Snippets Manager... ChrlHk, Chrl+B

Choose Toolbox Ikems. ..

Add-in Manager. ..

Macros

the Ready for

ooe 17:02:17 Gf
1 need ko know .
! Leave with all

Ackiver Control Tesk Container
Create GUID

Dokfuscakor Community Edition

B next level,
le: Yisual stud

006 16:53:01 Gk
osaft’s investme

Open: addresses issue
Create: B Leeiay ?nd partne:r feec
N ATLMFC Trace Tool ed range in sev
carrect bo cusko__
m External Toals... rity Update fa
=) PO0G 22:04:11 G
] .
FE T — __ﬁ Device Emulator Manager 073, The secl_!nt
Samples ar Import and Export Setkings... out the S'E’d':;”t’lf
Use & Starl _ makion and deplc
Mew Proje ustarize. .. t Chapters anc
How Do 1. Options. .. 2006 17:56:03 G
Developer -
| -
4 | ,
Ready y

1. used by permission

Debugging C/C++ Language MEX-Files

Attach.

Attach to Process

5 In the Attach to Process dialog box, select the MATLAB process and click

2l x|

Transpark: IDeFauIt

[~

Qualifier: [HowELLH = Browse... |

—Transpart Information
The default transport lets vou select processes on this computer or a remoke computer running the Microsoft Wisual Studio Remote

Debugging Monitor (MSYSMON.EXE),

Attach to: I Aukomatic: Native code Seleck,.. |

~Available Processes

Process | Tikle Type User Mame | Session

MATHWORKS hh... 0

acrotray . exe
MATHWORKS b, 0
1]

ckfmon exe

explorer.exe MATHWORKSIHA. ..
MATH . 0
Realmon exe MATHWORKSYhh.., O
rundll32. exe %86 MATHWORKSYhh... 0
Snaglt3z.exe Snaglt i) MATHWORKSYhh... 0
T3CHelp.exe *G6 MATHWORKShh... 0

™ show processes from all users ™ show processes in all sessions Refresh |

Atkach I Cancel I

4-29

4 Creating C/C++ Language MEX-Files

Visual Studio loads data then displays an empty code pane.

*2 Solutionl (Running) - Microsoft ¥isual Studio . | Ellﬂ

File Edit “iew Debug Tools Window Community Help
Eh o @ | % 5= (= %= | Hex | @~

Ready v

4-30

Debugging C/C++ Language MEX-Files

6 Open the source file yprime.c by selecting File > Open > File. yprime.c
1s found in the matlabroot/extern/examples/mex/ folder.

*2 Solution1 {Running) - Microsoft ¥isual Studio - | Ellﬂ

File iEu:Iit Wiewdw Debug Tools Window Community Help

e (O == -
= | Herx | E s
| Open L4 rEI Projeck/Solution. .. Crrl+3hife+0
Close | Fie... L ko
Close Solution Conwvert, .,

Save Solutionl Chrl+3
Save Solutionl As...

Save Al Crl+5hift+3

- S

Export Template, ..

Page Setup...

Prink. .. Chrl+P

Recent Files

Exit

Ready

7 Set a breakpoint by right-clicking the desired line of code and following
Breakpoint > Insert Breakpoint on the context menu. It is often

4-31

4 Creating C/C++ Language MEX-Files

convenient to set a breakpoint at mexFunction to stop at the beginning of
the gateway routine.

If you have not yet run the executable file, ignore any “!” icon that appears
with the breakpoint next to the line of code.

% yprime.c {(Running) - Microsoft ¥isual Studio - | Ellﬂ
File Edit Wiew Debug Tools wWindow Community Help
Pon @ @ | 5= Hex | L = -
<]
S ¥ prine.c * X
: =
wold mexFunction| int nlhs, mxirray *plhs[].,
= int nrhs, const mxﬂrrag*prhs[l i

ving

LJ
Il
K
linl

double *yp;
double *L, %y:
mwSize I, n;

/% Check for proper number of argunents +/ J

if (nrhs '= 2) {
mexXxErrMagTxt ("Two input arguments redquired. ™) :
} oelse if (nlh= > 1) |

mexErrMsgTxt ("Too many output arguments. ™) :

Ready Ln 70 Col 3 Zh3 v

4-32

Debugging C/C++ Language MEX-Files

Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

% yprime.c {(Running) - Microsoft ¥isual Studio - | Ellil
File Edit Wiew | Debug | Tools Window Community Help
S . | Windows r
vormec | P N - x
} Il Breakal Chrl+Al+Break ZI
void mexFl @ Stop Debugging Shift+FS hs[],
= ZE Detach al 1
; Terminate Al
A |
doub 1l
doubly o
B S Abtach to Process...
/* Chi Excepkions... Chrl+-Al+-E ents */
if (ny-—
mexEr] Eoquired. ™) ;
v oelsd =
mexEr] el Ents. ") ;
}
Toaggle Breakpoint Fa
/% Chy Mew Breakpoink p 0 be 4 X 1 or
:?) Delete All Breakpoints Chrl+Shift+F2
m = m; -
4 I i) Disable All Breakpaoints Ld
Ready Ln 70 Col 3 Zh3 v

8 Run the binary MEX-file in MATLAB. After typing:

yprime(1,1:4)

4-33

4 Creating C/C++ Language MEX-Files

4-34

yprime.c is opened in the Visual Studio debugger at the first breakpoint.
9 If you select Debug > Continue, MATLAB displays:

ans =
2.0000 8.9685 4.0000 -1.0947

For more information on how to debug in the Visual Studio environment,
see your Microsoft documentation.

Debugging on Linux Platforms

The GNU Debugger gdb, available on Linux systems, provides complete
source code debugging, including the ability to set breakpoints, examine
variables, and step through the source code line-by-line.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html

GNU Debugger gdb

In this procedure, the MATLAB command prompt >> is shown in front of
MATLAB commands, and 1inux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

To debug with gdb:

1 Compile the source MEX-file with the -g option, which builds the file with
debugging symbols included. For this example, at the Linux prompt, type:

linux> mex -g yprime.c

On a Linux 32-bit platform, this command creates the executable file
yprime.mexglx.

2 At the Linux prompt, start the gdb debugger using the matlab function -D
option:

linux> matlab -Dgdb

http://www.mathworks.com/support/tech-notes/1600/1605.html

Debugging C/C++ Language MEX-Files

3 Start MATLAB without the Java™ Virtual Machine (JVM™) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
binary MEX-file:

>> dbmex on
>> yprime(1,1:4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

<gdb> break mexFunction
<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type:

<gdb> continue
7 After stopping at the last breakpoint, type:
<gdb> continue
yprime finishes and MATLAB displays:
ans =

2.0000 8.9685 4.0000 -1.0947

8 From the MATLAB prompt you can return control to the debugger by
typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

4-35

4 Creating C/C++ Language MEX-Files

>> quit
9 When you are finished with the debugger, type:
<gdb> quit
You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information
on its use.

4-36

Handling Large mxArrays

Handling Large mxArrays

In this section...
“Using the 64-Bit API” on page 4-37
“Building the Binary MEX-File” on page 4-39

“Example” on page 4-39
“Caution Using Negative Values” on page 4-40

“Building Cross-Platform Applications” on page 4-40

Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These
large data arrays can have up to 2%—1 elements. The maximum number of
elements a sparse mxArray can have is 248-2,

Using the following instructions creates platform-independent binary
MEX-files as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Strategies for Efficient
Use of Memory” in the Programming Fundamentals documentation. Memory
management within source MEX-files can have special considerations, as
described in “Memory Management” on page 4-41.

Using the 64-Bit API

To work with a 64-bit mxArray, your source code must comply with the 64-bit
API. The signatures of API functions shown in the following table have
changed. To work with a 64-bit mxArray, your source code must comply
with the new API signatures (used with -largearraydims). Support for the
remaining functions in the C/C++ and Fortran API Reference library is kept
up-to-date through the reference page for each given API and notifications of
changes are made through release notes.

4-37

4 Creating C/C++ Language MEX-Files

4-38

mxCalcSingleSubscript
mxCalloc
mxCopyCharacterToPtr!
mxCopyComplex16ToPtr!
mxCopyComplex8ToPtr!
mxCopyIntegeriToPtr!
mxCopyInteger2ToPtr!
mxCopyInteger4ToPtr!
mxCopyPtrToCharacter!
mxCopyPtrToComplex16!
mxCopyPtrToComplex8!
mxCopyPtrToIntegeri!
mxCopyPtrToInteger2!
mxCopyPtrToInteger4!
mxCopyPtrToPtrArray!
mxCopyPtrToReal4!
mxCopyPtrToReal8!
mxCopyReal4ToPtr!
mxCopyReal8ToPtr!
mxCreateCellArray
mxCreateCellMatrix
mxCreateCharArray
mxCreateCharMatrixFromStrings
mxCreateDoubleMatrix
mxCreateLogicalArray?
mxCreateLogicalMatrix?

mxCreateNumericArray

mxCreateSparseLogicalMatrix 2
mxCreateStructArray
mxCreateStructMatrix
mxGetCell
mxGetDimensions
mxGetElementSize
mxGetField
mxGetFieldByNumber
mxGetIr

mxGetdJdc

mxGetM

mxGetN
mxGetNumberOfDimensions
mxGetNumberOfElements
mxGetNzmax
mxGetProperty
mxGetString

mxMalloc

mxRealloc

mxSetCell
mxSetDimensions
mxSetField
mxSetFieldByNumber
mxSetIr

mxSetdJdc

mxSetM

mxSetN

Handling Large mxArrays

mxCreateNumericMatrix mxSetNzmax

mxCreateSparse mxSetProperty

Fortran function only
2C function only

Functions in this API use the mwIndex and mwSize types. For information
about using these macros, see “Required Header Files” on page 4-4.

Building the Binary MEX-File

Use the mex build script option -largeArrayDims with the 64-bit API.

Example

The example, arraySize.c in matlabroot/extern/examples/mex, illustrates
memory requirements of large mxArrays. To see the example, open the file in
MATLAB Editor.

This function requires one positive scalar numeric input, which it uses to
create a square matrix. It checks the size of the input to make sure your
system can theoretically create a matrix of this size. If the input is valid, it

displays the size of the mxArray in kilobytes.
To build this MEX-file, type:

mex -largeArrayDims arraySize.c
To run the MEX-file, type:

arraySize(2°10)

If your system has enough available memory, MATLAB displays:

Dimensions: 1024 x 1024
Size of array in kilobytes: 1024

4-39

4 Creating C/C++ Language MEX-Files

4-40

If your system does not have enough memory to create the array, MATLAB
displays an Out of memory error.

You can experiment with this function to test the performance and limits of
handling large arrays on your system.

Caution Using Negative Values

When using the 64-bit API, mwSize and mwIndex are equivalent to size t in
C/C++. This type is unsigned, unlike int, which is the type used in the 32-bit
API. Be careful not to pass any negative values to functions that take mwSize
or mwIndex arguments. Do not cast negative int values to mwSize or mwIndex;
the returned value cannot be predicted. Instead, change your code to avoid
using negative values.

Building Cross-Platform Applications

If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as int in C/C++. Be careful to avoid
assigning a large mwSize or mwIndex value to an int or other variable that
might be too small.

Memory Management

Memory Management

In this section...

“Automatic Cleanup of Temporary Arrays” on page 4-41

“Persistent Arrays” on page 4-42

“Hybrid Arrays” on page 4-43

Memory management in MEX-files is similar to memory management in
any C/C++ or Fortran application. However, there are special considerations

because a binary MEX-file exists within the context of a larger application,
MATLAB.

To avoid common problems related to memory management, see “Memory
Management Issues” on page 3-43.

Automatic Cleanup of Temporary Arrays

When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

In general, we recommend that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is
more efficient to perform this cleanup in the source MEX-file than to rely on
the automatic mechanism. However, there are several circumstances in which
the MEX-file does not reach its normal return statement.

The normal return is not reached if:

e A call to mexErrMsgTxt occurs.

e A call to mexCallMATLAB occurs and the function being called creates an
error. (A source MEX-file can trap such errors by using the mexSetTrapFlag
function, but not all MEX-files necessarily need to trap errors.)

¢ The user interrupts the binary MEX-file’s execution using Ctrl+C.

4-41

4 Creating C/C++ Language MEX-Files

4-42

® The binary MEX-file runs out of memory. When this happens, the
MATLAB out-of-memory handler immediately terminates the MEX-file.

A careful MEX-file programmer can ensure safe cleanup of all temporary
arrays and memory before returning in the first two cases, but not in the
last two cases. In the last two cases, the automatic cleanup mechanism is
necessary to prevent memory leaks.

Persistent Arrays

You can exempt an array, or a piece of memory, from the MATLAB automatic
cleanup by calling mexMakeArrayPersistent or mexMakeMemoryPersistent.
However, if a binary MEX-file creates such persistent objects, there is a
danger that a memory leak could occur if the MEX-file is cleared before the
persistent object is properly destroyed. To prevent this from happening, a
source MEX-file that creates persistent objects should register a function,
using the mexAtExit function, which disposes of the objects. (You can use a
mexAtExit function to dispose of other resources as well; for example, you can
use mexAtExit to close an open file.)

For example, here is a simple source MEX-file that creates a persistent array
and properly disposes of it.

#include "mex.h"

static int initialized = O0;
static mxArray *persistent_array_ptr = NULL;

void cleanup(void) {
mexPrintf ("MEX-file is terminating, destroying array\n");
mxDestroyArray(persistent_array_ptr);

}

void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])
{
if (!initialized) {
mexPrintf ("MEX-file initializing, creating array\n");

Memory Management

/* Create persistent array and register its cleanup. */
persistent_array ptr = mxCreateDoubleMatrix(1, 1, mxREAL);
mexMakeArrayPersistent (persistent_array_ptr);
mexAtExit(cleanup);

initialized = 1;

/* Set the data of the array to some interesting value. */
*mxGetPr(persistent_array_ptr) = 1.0;
} else {
mexPrintf ("MEX-file executing; value of first array
element is %g\n", *mxGetPr(persistent_array_ptr));
}
}

Hybrid Arrays

Functions such as mxSetPr, mxSetData, and mxSetCell allow the direct
placement of memory pieces into an mxArray. mxDestroyArray destroys these
pieces along with the entire array. Because of this, it is possible to create an
array that cannot be destroyed, for example, an array on which it is not safe
to call mxDestroyArray. Such an array is called a hybrid array, because it
contains both destroyable and nondestroyable components.

For example, it is not legal to call mxFree (or the ANSI free() function,
for that matter) on automatic variables. Therefore, in the following code
fragment, pArray is a hybrid array.

mxArray *pArray = mxCreateDoubleMatrix(0, 0, mxREAL);
double data[10];

mxSetPr (pArray, data);
mxSetM(pArray, 1);
mxSetN(pArray, 10);

Another example of a hybrid array is a cell array or structure, one of whose
children is a read-only array (an array with the const qualifier, such as one of
the inputs to the MEX-file). The array cannot be destroyed because the input
to the MEX-file would also be destroyed.

4-43

4 Creating C/C++ Language MEX-Files

4-44

Because hybrid arrays cannot be destroyed, they cannot be cleaned up by the
automatic mechanism outlined in “Automatic Cleanup of Temporary Arrays”
on page 4-41. As described in that section, the automatic cleanup mechanism
1s the only way to destroy temporary arrays in case of a user interrupt.
Therefore, temporary hybrid arrays are illegal and can cause your binary
MEX-file to crash. Although persistent hybrid arrays are viable, it is best to
avoid using them whenever possible.

Large File 1/O

Large File 1/0

In this section...

“Prerequisites to Using 64-Bit I/O” on page 4-45

“Specifying Constant Literal Values” on page 4-47

“Opening a File” on page 4-48

“Printing Formatted Messages” on page 4-49

“Replacing fseek and ftell with 64-Bit Functions” on page 4-49
“Determining the Size of an Open File” on page 4-50
“Determining the Size of a Closed File” on page 4-51

Prerequisites to Using 64-Bit 1/O

MATLAB supports the use of 64-bit file I/O operations in your MEX-file
programs. This enables you to read and write data to files that are up to and
greater than 2 GB (2 31'! bytes) in size. Note that some operating systems or
compilers might not support files larger than 2 GB. This section describes the
components you need to use 64-bit file I/O in your MEX-file programs:

e “Header File” on page 4-45

® “Type Declarations” on page 4-46

* “Functions” on page 4-46

Header File

Header file i064.h defines many of the types and functions required for
64-bit file I/0. The statement to include this file must be the first #include
statement in your source file and must also precede any system header
include statements:

#include "io64.h"
#include "mex.h"

4-45

4 Creating C/C++ Language MEX-Files

Type Declarations
Use the following types to declare variables used in 64-bit file I/O.

MEX Type Description POSIX

fpos T Declares a 64-bit int type fpos_t
for setFilePos() and
getFilePos(). Defined
in i064.h.

int64 T, uint64 T Declares 64-bit signed and long, long
unsigned integer types.
Defined in tmwtypes.h.

structStat Declares a structure to hold struct stat
the size of a file. Defined in
i064.h.

FMT64 Used in mexPrintf to %11d

specify length within

a format specifier such

as %d. See example in

the section “Printing
Formatted Messages” on
page 4-49. FMT64 is defined in
tmwtypes.h.

LL, LLU Suffixes for literal int LL, LLU
constant 64-bit values
(C Standard ISO/IEC
9899:1999(E) Section 6.4.4.1).
Used only on UNIX systems.

Functions

Use the following functions for 64-bit file I/O. All are defined in the header
file i064.h.

4-46

Large File 1/O

Function Description POSIX

fileno() Gets a file descriptor from a fileno()
file pointer

fopen() Opens the file and obtains the | fopen()
file pointer

getFileFstat() Gets the file size of a given file | fstat()
pointer

getFilePos() Gets the file position for the fgetpos()
next I/0

getFileStat() Gets the file size of a given stat()
filename

setFilePos() Sets the file position for the fsetpos()
next I/0

Specifying Constant Literal Values

To assign signed and unsigned 64-bit integer literal values, use type
definitions int64_T and uint64_T.

On UNIX systems, to assign a literal value to an integer variable where the
value to be assigned is greater than 2 3'-1 signed, you must suffix the value
with LL. If the value is greater than 2 32-1 unsigned, then use LLU as the
suffix. These suffixes apply only to UNIX systems and are considered invalid
on the Microsoft Windows systems.

Note The LL and LLU suffixes are not required for hardcoded (literal) values
less than 2 G (2 3'-1), even if they are assigned to a 64-bit int type.

The following example declares a 64-bit integer variable initialized with a
large literal int value, and two 64-bit integer variables:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[])

{
#if defined(_MSC_VER) || defined(__BORLANDC_) /* Windows */

4-47

4 Creating C/C++ Language MEX-Files

int64_T large_offset_example = 9000222000;

#else /* UNIX */
int64_T large offset_example 9000222000LL;

#endif

int64_T offset 0;
int64_T position = O0;

Opening a File

To open a file for reading or writing, use the C/C++ fopen function as you
normally would. As long as you have included 1064.h at the start of your
program, fopen works correctly for large files. No changes at all are required
for fread, fwrite, fprintf, fscanf, and fclose

To open an existing file for read and update in binary mode:

fp = fopen(filename, "r+b");
if (NULL == fp)
{
/* File does not exist. Create new file for writing
* in binary mode.
*/
fp = fopen(filename, "wb");
if (NULL == fp)
{
sprintf(str, "Failed to open/create test file '%s'",
filename);
mexXErrMsgTxt (str);
return;
}
else
{
mexPrintf ("New test file '%s' created\n",filename);
}
}

else mexPrintf("Existing test file '%s' opened\n",filename);

4-48

Large File 1/O

Printing Formatted Messages

You cannot print 64-bit integers using the %d conversion specifier. Instead,
use FMT64 to specify the appropriate format for your platform. FMT64 is
defined in the header file tmwtypes.h. The following example shows how to
print a message showing the size of a large file:

int64_T large_offset_example = 9000222000LL;

mexPrintf ("Example large file size: %" FMT64 "d bytes.\n",
large_offset_example);

Replacing fseek and ftell with 64-Bit Functions

The ANSI C fseek and ftell functions are not 64-bit file I/O capable on
most platforms. The functions setFilePos and getFilePos, however, are
defined as the corresponding POSIX fsetpos and fgetpos, (or fsetpos64 and
fgetpos64), as required by your platform/OS. These functions are 64-bit file
I/O capable on all platforms.

The following example shows how to use setFilePos instead of fseek, and
getFilePos instead of ftell. It uses getFileFstat to find the size of the file,
and then uses setFilePos to seek to the end of the file to prepare for adding
data at the end of the file.

Note Although the offset parameter to setFilePos and getFilePos is
really a pointer to a signed 64-bit integer, int64_T, it must be cast to an
fpos_T*. The fpos_T type is defined in 1064.h as the appropriate fpos64_t
or fpos_t, as required by your platform/OS.

getFileFstat(fileno(fp), &statbuf);
fileSize = statbuf.st_size;
offset = fileSize;

setFilePos(fp, (fpos_T*) &offset);
getFilePos(fp, (fpos_T*) &position);

Unlike fseek, setFilePos supports only absolute seeking relative to the
beginning of the file. If you want to do a relative seek, first call getFileFstat

4-49

4 Creating C/C++ Language MEX-Files

4-50

to obtain the file size, and then convert the relative offset to an absolute offset
that you can pass to setFilePos.

Determining the Size of an Open File

To get the size of an open file:

e Refresh the record of the file size stored in memory using getFilePos and
setFilePos.

® Retrieve the size of the file using getFileFstat.

Refreshing the File Size Record

Before attempting to retrieve the size of an open file, you should first refresh
the record of the file size residing in memory. If you skip this step on a file
that is opened for writing, the file size returned might be incorrect or 0.

To refresh the file size record, seek to any offset in the file using setFilePos.
If you do not want to change the position of the file pointer, you can seek to
the current position in the file. This example obtains the current offset from
the start of the file, and then seeks to the current position to update the file
size without moving the file pointer:

getFilePos(fp, (fpos_T*) &position);
setFilePos(fp, (fpos_T*) &position);

Getting the File Size

The getFileFstat function takes a file descriptor input argument (that you
can obtain from the file pointer of the open file using fileno) and returns the
size of that file in bytes in the st_size field of a structStat structure:

structStat statbuf;
int64_T fileSize = 0;

if (0 == getFileFstat(fileno(fp), &statbuf))
{
fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);
}

Large File 1/O

Determining the Size of a Closed File

The getFileStat function takes the filename of a closed file as an input
argument and returns the size of the file in bytes in the st_size field of a

structStat structure:

structStat statbuf;
int64_T fileSize = O0;

if (0 == getFileStat(filename, &statbuf))
{

fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);

}

4-51

4 Creating C/C++ Language MEX-Files

4-52

Creating Fortran
MEX-Files

* “Fortran Source MEX-Files” on page 5-2

e “Examples of Fortran Source MEX-Files” on page 5-12
® “Debugging Fortran Source MEX-Files” on page 5-22
¢ “Handling Large mxArrays” on page 5-26

¢ “Memory Management” on page 5-29

5 Creating Fortran MEX-Files

Fortran Source MEX-Files

In this section...

“The Components of a Fortran MEX-File” on page 5-2
“Gateway Routine” on page 5-2

“Computational Routine” on page 5-5

“Preprocessor Macros” on page 5-5

“Using the Fortran %val Construct” on page 5-6

“Data Flow in MEX-Files” on page 5-7

The Components of a Fortran MEX-File

You create binary MEX-files using the mex build script. mex compiles and
links source MEX-file files into a shared library called a binary MEX-file,
which you can run from the MATLAB command line. Once compiled, you
treat binary MEX-files like MATLAB functions.

This section explains the components of a source MEX-file, statements you
use in a program source file. Unless otherwise specified, the term "MEX-file”
refers to a source file.

The MEX-file consists of:
¢ A “Gateway Routine” on page 5-2 that interfaces Fortran and MATLAB

data.

* A “Computational Routine” on page 5-5 that performs the computations
you want implemented in the binary MEX-file.

e “Preprocessor Macros” on page 5-5 for building platform-independent code.

Gateway Routine

The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guidelines to create a gateway routine:

¢ “Naming the Gateway Routine” on page 5-3

Fortran Source MEX-Files

® “Required Parameters” on page 5-3

e “Creating and Using Source Files” on page 5-4

e “Using MATLAB Libraries” on page 5-4

e “Required Header Files” on page 5-4
e “Naming the MEX-File” on page 5-5

A Fortran MEX-file gateway routine looks like this:

C The gateway routine.
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer nlhs, nrhs
mwpointer plhs(*), prhs(*)

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters

A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
described in the following table.

Parameter | Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs

array.

Declare prhs and plhs as type mxArray *, which means they point to
MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

5-3

5 Creating Fortran MEX-Files

5-4

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

Creating and Using Source Files

It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-5; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, you can combine them into one source file or into separate files. If
you use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 5-5.

Name your Fortran source file with an uppercase .F file extension.

The Difference Between .f and .F Files. Fortran compilers assume
source files using a lowercase .f file extension have been preprocessed. On
most platforms, mex makes sure the file is preprocessed regardless of the
file extension. However, on Apple Macintosh platforms, mex cannot force
preprocessing. Use an uppercase .F file extension to ensure your Fortran
MEX-file is platform independent.

Using MATLAB Libraries

The MATLAB C/C++ and Fortran API Reference describes functions you can
use in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The MX Matrix Library
functions provide access methods for manipulating MATLAB arrays. The
MEX Library functions perform operations in the MATLAB environment.

Required Header Files

To use the functions in the C/C++ and Fortran API Reference library you
must include the fintrf header file, which declares the entry point and
interface routines. Put this statement in your source file:

#include "fintrf.h"

Fortran Source MEX-Files

Naming the MEX-File

The binary MEX-file name, and hence the name of the function you use in
MATLAB, is the name of the source file containing your gateway routine.

The file extension of the binary MEX-file is platform-dependent. You find
the file extension using the mexext function, which returns the value for
the current machine.

Computational Routine

The computational routine contains the code for performing the computations
you want implemented in the binary MEX-file. Computations can be
numerical computations as well as inputting and outputting data. The
gateway calls the computational routine as a subroutine.

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 might also apply to your computational routine.

Preprocessor Macros

The MX Matrix and MEX libraries use the MATLAB preprocessor macros
mwSize and mwIndex for cross-platform flexibility. mwSize represents
size values, such as array dimensions and number of elements. mwIndex
represents index values, such as indices into arrays.

MATLAB has an additional preprocessor macro for Fortran files, mwPointer.
MATLAB uses a unique data type, the mxArray. Because you cannot create
a new data type in Fortran, MATLAB passes a special identifier, created

by the mwPointer preprocessor macro, to a Fortran program. This is how
you get information about an mxArray in a native Fortran data type. For
example, you can find out the size of the mxArray, determine whether or not
it is a string, and look at the contents of the array. Use mwPointer to build
platform-independent code.

The Fortran preprocessor converts mwPointer to integer*4 when building

binary MEX-files on 32-bit platforms and to integer*8 when building on
64-bit platforms.

5-5

5 Creating Fortran MEX-Files

5-6

Note Declaring a pointer to be the incorrect size may cause your program
to crash.

Using the Fortran %val Construct

The Fortran %val(arg) construct specifies that an argument, arg, is to be
passed by value, instead of by reference. The %val construct is supported by
most, but not all, Fortran compilers.

If your compiler does not support the %val construct, you must copy the array
values into a temporary true Fortran array using the mxCopy* routines (for
example, mxCopyPtrToReal8).

A %val Construct Example

If your compiler supports the %val construct, you can use routines that point
directly to the data (that is, the pointer returned by mxGetPr or mxGetPi).
You can use %val to pass this pointer’s contents to a subroutine, where it is
declared as a Fortran double-precision matrix.

For example, consider a gateway routine that calls its computational routine,
yprime, by:

call yprime(S%sval(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would
replace the call to the computational subroutine with:

C Copy array pointers to local arrays.
call mxCopyPtrToReal8(t, tr, 1)
call mxCopyPtrToReal8(y, yr, 4)
C
C Call the computational subroutine.
call yprime(ypr, tr, yr)
C
C Copy local array to output array pointer.
call mxCopyReal8ToPtr(ypr, yp, 4)

Fortran Source MEX-Files

You must also add the following declaration line to the top of the gateway
routine:

real*8 ypr(4), tr, yr(4)

Note that if you use mxCopyPtrToReal8 or any of the other mxCopy* routines,
the size of the arrays declared in the Fortran gateway routine must be
greater than or equal to the size of the inputs to the MEX-file coming in from
MATLAB. Otherwise, mxCopyPtrToReal8 does not work correctly.

Data Flow in MEX-Files

The following examples illustrate data flow in MEX-files:

e “Showing Data Input and Output” on page 5-7
* “Gateway Routine Data Flow Diagram” on page 5-8

e “MATLAB Example timestwo.F” on page 5-9

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one
output argument. The MATLAB syntax is [X] = myFunction(Y, Z).To
call myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

nlhs =1

nrhs = 2

plhs > @ >0

prhs el -
o —Z

5 Creating Fortran MEX-Files

5-8

Your input is prhs, a two-element array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element
1s a null pointer. The parameter plhs points at nothing because the output X
1s not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If the routine does not assign a value to plhs[0] but you assign an
output value to the function when you call it, MATLAB generates an error.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B).In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.F uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]
to the pointers to the newly created MATLAB arrays. It uses the mxGet*
functions to extract your data from your input arguments prhs[0] and
prhs[0]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

Fortran Source MEX-Files

Inputs
MATLAB 5
integer

Acall to -
MEX-file func: B = prhs(2)

[C,D]=func(A,B) | integer A
tells MATLAB to » A = prhs(1) —
pass variables A and
B to your MEX-file.
Cand D are left
unassigned. func.F

subroutine mexFunction(
nlhs, plhs, nrhs, prhs)
integer plhs(*), prhs(*),nlhs, nrhs

In the gateway routine:

e Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs(1),(2),...
to the pointers to the newly created
MATLAB arrays.

e Use the mxGet functions to extract
your data from prhs(1),(2),... .

e Call your Fortran subroutine passing
the input and output data pointers as
function parameters using %val.

MATLAB
On return from integer D
MEX-file func: D = plhs(2)

[C,D]=func(A,B)

. . integer C
plhs(1) is assigned [- —
fo C and plhs(2) is C = plhs(1)
assigned to D.

Outputs

—
Fortran MEX Cycle

MATLAB Example timestwo.F

Let’s look at an example, timestwo.F, found in your
matlabroot/extern/examples/refbook folder. (“Building MEX-Files” on
page 3-23 explains how to create the binary MEX-file.) Its calling syntax is
Y = timestwo (X), where X is a number. Type:

X = 99;
y timestwo (x)

MATLAB displays:

y=
198

5-9

5 Creating Fortran MEX-Files

5-10

The gateway routine validates the input arguments. This step includes
checking the number, type, and size of the input arrays as well as
examining the number of output arrays. If the inputs are not valid, call
mexErrMsgIdAndTxt. For example:

C Check for proper number of arguments.
if(nrhs .ne. 1) then
call mexErrMsgIdAndTxt ('timestwo.F', 'One input required.')
elseif(nlhs .gt. 1) then
call mexErrMsgIdAndTxt ('timestwo.F', 'Too many output arguments.')
endif

C Check that the input is a number.

if (mxIsNumeric(prhs(1)) .eq. 0) then
call mexErrMsgIdAndTxt ('timestwo.F', 'Input must be a number.')
endif

To create MATLAB arrays, call one of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example:

C Create matrix for the return argument.
plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

In the gateway routine, you access the data in mxArray and manipulate

it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the
mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in Fortran. For example:

C Create Fortran array from the input argument.

inputptr = mxGetPr(prhs(1))
call mxCopyPtrToReal8(inputptr,finput,nelements)

In this example, a computational routine, timestwo, performs the calculations:

C Call the computational subroutine.
call timestwo(foutput, finput)

Fortran Source MEX-Files

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the binary MEX-file.

C Load the data into outputptr, which is the output to MATLAB.
call mxCopyReal8ToPtr(foutput,outputptr,nelements)

When a binary MEX-file completes its task, it returns control to MATLAB.
MATLAB automatically destroys any arrays created by the MEX-file not
returned through the left-hand side arguments.

In general, we recommend that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is
more efficient to perform this cleanup in the source MEX-file than to rely on
the automatic mechanism.

5-11

5 Creating Fortran MEX-Files

Examples of Fortran Source MEX-Files

In this section...

“Introduction to Fortran Examples” on page 5-12
“Passing a Scalar” on page 5-13

“Passing Strings” on page 5-13

“Passing Arrays of Strings” on page 5-14

“Passing Matrices” on page 5-15

“Passing Integers” on page 5-16

“Passing Two or More Inputs or Outputs” on page 5-16
“Handling Complex Data” on page 5-17

“Dynamically Allocating Memory” on page 5-18
“Handling Sparse Matrices ” on page 5-19

“Calling Functions from Fortran MEX-Files” on page 5-20

Introduction to Fortran Examples

The MATLAB C/C++ and Fortran API Reference provides a set of Fortran
routines that handle the types supported by MATLAB. For each data type,
there is a specific set of functions that you can use for data manipulation.

Source code for the examples in this chapter are located in the
matlabroot/extern/examples/refbook folder of your MATLAB installation.
To build these examples, make sure you have a Fortran compiler selected
using the mex -setup command. Then at the MATLAB command prompt,

type:

mex filename.F

where filename is the name of the example.

This section looks at source code for the examples. Unless otherwise specified,
the term "MEX-file” refers to a source file.

5-12

Examples of Fortran Source MEX-Files

Passing a Scalar

Let’s look at a simple example of Fortran code and its MEX-file equivalent.
Here is a Fortran computational routine that takes a scalar and doubles it:

subroutine timestwo(y, X)
real*8 x, y

y =2.0 * X
return
end

To see the same function written in the MEX-file format (timestwo.F), open
the file in MATLAB Editor.

To build this example, at the command prompt type:

mex timestwo.F

This command creates the binary MEX-file called timestwo with an extension
corresponding to the machine type on which you’re running. You can now call
timestwo like a MATLAB function:

X = 2;
y timestwo (x)

MATLAB displays:

y=
4

Passing Strings
Passing strings from MATLAB to a Fortran MEX-file is straightforward. The

program revord.F accepts a string and returns the characters in reverse
order. To see the example revord.F, open the file in MATLAB Editor.

After checking for the correct number of inputs, the gateway routine
mexFunction verifies that the input was a row vector string. It then finds
the size of the string and places the string into a Fortran character array.
Note that in the case of character strings, it is not necessary to copy the
data into a Fortran character array using mxCopyPtrToCharacter. In fact,

5-13

5 Creating Fortran MEX-Files

5-14

mxCopyPtrToCharacter works only with MAT-files. For more information,
see “Using MAT-Files” on page 1-2.

To build this example, at the command prompt type:

mex revord.F

Type:
x = 'hello world';
y = revord(x)

MATLAB displays:
y =

dlrow olleh

Passing Arrays of Strings

Passing arrays of strings adds a complication to the example “Passing Strings’
on page 5-13. Because MATLAB stores elements of a matrix by column
instead of by row, the size of the string array must be correctly defined in the
Fortran MEX-file. The key point is that the row and column sizes as defined
in MATLAB must be reversed in the Fortran MEX-file. Consequently, when
returning to MATLAB, the output matrix must be transposed.

4

This example places a string array/character matrix into MATLAB as output
arguments rather than placing it directly into the workspace.

To build this example, at the command prompt type:
mex passstr.F

Type:
passstr;

to create the 5-by-15 mystring matrix. You need to do some further
manipulation. The original string matrix is 5-by-15. Because of the way
MATLAB reads and orients elements in matrices, the size of the matrix
must be defined as M=15 and N=5 in the MEX-file. After the matrix is put

Examples of Fortran Source MEX-Files

into MATLAB, the matrix must be transposed. The program passstr.F
illustrates how to pass a character matrix. To see the code passstr.F, open
the file in MATLAB Editor.

Type:

passstr

MATLAB displays:

ans =

MATLAB
The Scientific
Computing
Environment

by TMW, Inc.

Passing Matrices

In MATLAB, you can pass matrices into and out of MEX-files written in
Fortran. You can manipulate the MATLAB arrays by using mxGetPr and
mxGetPi to assign pointers to the real and imaginary parts of the data stored
in the MATLAB arrays. You can create new MATLAB arrays from within
your MEX-file by using mxCreateDoubleMatrix.

The example matsq.F takes a real 2-by-3 matrix and squares each element.
To see the source code, open the file in MATLAB Editor.

After performing error checking to ensure that the correct number of inputs
and outputs was assigned to the gateway subroutine and to verify the input
was in fact a numeric matrix, matsq.F creates a matrix. The matrix is
copied to a Fortran matrix using mxCopyPtrToReal8. Now the computational
subroutine can be called, and the return argument is placed into y_pr, the
pointer to the output, using mxCopyReal8ToPtr.

To build this example, at the command prompt type:

mex matsq.F

For a 2-by-3 real matrix, type:

5-15

5 Creating Fortran MEX-Files

5-16

X
y

[1 2 3; 456];
matsq(x)

MATLAB displays:

y:
1 4 9
16 25 36

Passing Integers

The example matsqint8.F accepts a matrix of MATLAB type int8 and
squares each element. To see the source code, open the file in MATLAB
Editor. Data of type int8, a signed 8-bit integer, is equivalent to
Fortran type integer*1, a signed 1-byte integer. Use the API functions
mxCopyPtrToIntegeri and mxCopyIntegeri1ToPtr to copy values between
MATLAB and Fortran arrays.

To build this example, at the command prompt type:
mex matsqint8.F

Type:

B int8([1 2; 3 4; -5 -6]);
y = matsqint8(B)

MATLAB displays:

y -
1 4
9 16
25 36

For information about using other integer data types, consult your Fortran
compiler manual.

Passing Two or More Inputs or Outputs

The plhs and prhs parameters (see “The Components of a Fortran MEX-File”
on page 5-2) are vectors containing pointers to the left-hand side (output)
variables and right-hand side (input) variables. plhs(1) contains a pointer to

Examples of Fortran Source MEX-Files

the first left-hand side argument, plhs(2) contains a pointer to the second
left-hand side argument, and so on. Likewise, prhs (1) contains a pointer to
the first right-hand side argument, prhs(2) points to the second, and so on.

The example xtimesy.F multiplies an input scalar times an input scalar or
matrix. To see the source code, open the file in MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple

inputs and outputs is straightforward. All you need to do is keep track of
which indices of the vectors prhs and plhs correspond to which input and
output arguments of your function. In this example, the input variable x

corresponds to prhs(1) and the input variable y to prhs(2).

To build this example, at the command prompt type:
mex xtimesy.F
For an input scalar x and a real 3-by-3 matrix, type:

X = 3; y = ones(3);
z xtimesy(x, y)

MATLAB displays:

Z =
3 3 3
3 3 3
3 3 3

Handling Complex Data

MATLAB stores complex double-precision data as two vectors of numbers—one
vector contains the real data and the other contains the imaginary data. The
functions mxCopyPtrToComplex16 and mxCopyComplex16ToPtr copy MATLAB
data to a native complex*16 Fortran array.

The example convec.F takes two complex vectors (of length 3) and convolves
them. To see the source code, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.F

5-17

5 Creating Fortran MEX-Files

5-18

Enter the following at the command prompt:

X =[8 - 1i, 4 + 2i, 7 - 3i];
y = [8 - 61, 12 + 161, 40 - 42i];
Type:

z = convec(x, Yy)
MATLAB displays:
7z =
1.0e+02 *
Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.28001 1.3200 - 1.44001
3.7600 - 0.12001

Column 5

1.5400 - 4.14001

which agrees with the results the built-in MATLAB function conv.m produces.

Dynamically Allocating Memory

To allocate memory dynamically in a Fortran MEX-file, use %val. (See “Using
the Fortran %val Construct” on page 5-6.) The example dblmat.F takes an
input matrix of real data and doubles each of its elements. To see the source
code, open the file in MATLAB Editor. compute.F is the subroutine dblmat
calls to double the input matrix. (Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex dblmat.F compute.F

Examples of Fortran Source MEX-Files

For the 2-by-3 matrix, type:

X
y

[1 2 3; 45 6];
dblmat (x)

MATLAB displays:

Note The dblmat.F example, as well as fulltosparse.F and sincall.F, are
split into two parts, the gateway and the computational subroutine, because
of restrictions in some compilers.

Handling Sparse Matrices

MATLAB provides a set of functions that allow you to create and manipulate
sparse matrices. There are special parameters associated with sparse
matrices, namely ir, jc, and nzmax. For information on how to use these
parameters and how MATLAB stores sparse matrices in general, see “Sparse
Matrices” on page 3-21.

Note Sparse array indexing is zero-based, not one-based.

The fulltosparse.F example illustrates how to populate a sparse matrix.
To see the source code, open the file in MATLAB Editor. loadsparse.F is
the subroutine fulltosparse calls to fill the mxArray with the sparse data.
(Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex fulltosparse.F loadsparse.F

At the command prompt, typing:

full = eye(5)
full

5-19

5 Creating Fortran MEX-Files

5-20

o oOoo =
oo o =0
oo —+0o0o
o+ 0 O0O0o
- O O O o

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix:

spar = fulltosparse(full)
spar

—
w
w
—_— — — — —
O O Gy

Calling Functions from Fortran MEX-Files

You can call MATLAB functions, operators, user-defined functions, and other
binary MEX-files from within your Fortran source code by using the API
function mexCallMATLAB. The sincall.F example creates an mxArray, passes
various pointers to a subfunction to acquire data, and calls mexCallMATLAB to
calculate the sine function and plot the results. To see the source code, open
the file in MATLAB Editor. fill.F is the subroutine sincall calls to fill the
mxArray with data. (Open the file in MATLAB Editor.)

It is possible to use mexCallMATLAB (or any other API routine) from within
your computational Fortran subroutine. Note that you can only call most
MATLAB functions with double-precision data. Some functions that perform
computations, such as eig, do not work correctly with data that is not double
precision.

To build this example, at the command prompt type:

mex sincall.F fill.F

Running this example:

sincall

Examples of Fortran Source MEX-Files

displays the results:

v Fiquea Hn 1 [_1r]x]

Lt Lot = woe |4

T o Bl AR | Il Ho 2l

Note You can generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. See the following example.

This function returns two variables but only assigns one of them a value:

function [a,b]=foo[c]
a=2*c;

If you then call foo using mexCallMATLAB, the unassigned output variable is
now of type mxUNKNOWN_CLASS.

5-21

5 Creating Fortran MEX-Files

5-22

Debugging Fortran Source MEX-Files

In this section...

“Notes on Debugging” on page 5-22
“Debugging on Microsoft Windows Platforms” on page 5-22

“Debugging on Linux Platforms” on page 5-22

Notes on Debugging

The examples show how to debug timestwo.F, found in your
matlabroot/extern/examples/refbook folder.

Binary MEX-files built with the -g option do not execute on other computers
because they rely on files that are not distributed with MATLAB software.
Refer to the “Calling C/C++ and Fortran Programs from MATLAB” topic
“Troubleshooting MEX-Files” on page 3-35 for additional information on
isolating problems with MEX-files.

Debugging on Microsoft Windows Platforms

For MEX-files compiled with any version of the Intel Visual Fortran compiler,
you can use the debugging tools found in your version of Microsoft Visual
Studio. Refer to the “Creating C/C++ Language MEX-Files” topic “Debugging
on the Microsoft Windows Platforms” on page 4-26 for instructions on using
this debugger.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html.

Debugging on Linux Platforms

The MATLAB supported Fortran compiler g95 has a -g option for building
binary MEX-files with debug information. Such files can be used with gdb,
the GNU Debugger. This section describes using gdb.

http://www.mathworks.com/support/tech-notes/1600/1605.html

Debugging Fortran Source MEX-Files

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html

GNU Debugger gdb

In this example, the MATLAB command prompt >> is shown in front of
MATLAB commands, and 1inux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

1 To compile the source MEX-file, type:

linux> mex -g timestwo.F

On a Linux 32-bit platform, this command creates the executable file
timestwo.mexglx.

2 At the Linux prompt, start the gdb debugger using the matlab -D option:

linux> matlab -Dgdb

3 Start MATLAB without the Java Virtual Machine (JVM) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
binary MEX-file:

>> dbmex on
>> y = timestwo(4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

5-23

http://www.mathworks.com/support/tech-notes/1600/1605.html

5 Creating Fortran MEX-Files

5-24

Note The function name may be slightly altered by the compiler (for
example, it may have an underscore appended). To determine how this
symbol appears in a given MEX-file, use the Linux command nm. For
example:

linux> nm timestwo.mexglx | grep -i mexfunction

The operating system responds with something like:

0000091c T mexfunction_

Use mexfunction_in the breakpoint statement. Be sure to use the correct
case.

<gdb> break mexfunction_
<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type continue:
<gdb> continue
7 After stopping at the last breakpoint, type:
<gdb> continue
timestwo finishes and MATLAB displays:
y =
8

8 From the MATLAB prompt you can return control to the debugger by
typing:

>> dbmex stop

Debugging Fortran Source MEX-Files

Or, if you are finished running MATLAB, type:

>> quit
9 When you are finished with the debugger, type:
<gdb> quit
You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information
on its use.

5-25

5 Creating Fortran MEX-Files

5-26

Handling Large mxArrays

Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These
large data arrays can have up to 24*~1 elements. The maximum number of
elements a sparse mxArray can have is 248-2,

Using the following instructions creates platform-independent binary
MEX-files as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Strategies for Efficient
Use of Memory” in the Programming Fundamentals documentation. Memory
management within source MEX-files can have special considerations, as
described in “Memory Management” on page 4-41.

Using the 64-Bit API

To work with a 64-bit mxArray, your source code must comply with the 64-bit
API. The signatures of API functions shown in the following table have
changed. To work with a 64-bit mxArray, your source code must comply
with the new API signatures (used with -largearraydims). Support for the
remaining functions in the C/C++ and Fortran API Reference library is kept
up-to-date through the reference page for each given API and notifications of
changes are made through release notes.

mxCalcSingleSubscript mxCreateSparseLogicalMatrix 2
mxCalloc mxCreateStructArray
mxCopyCharacterToPtr! mxCreateStructMatrix
mxCopyComplex16ToPtr! mxGetCell
mxCopyComplex8ToPtr! mxGetDimensions
mxCopyIntegeriToPtr! mxGetElementSize

Handling Large mxArrays

mxCopyInteger2ToPtr!
mxCopyInteger4ToPtr!
mxCopyPtrToCharacter!
mxCopyPtrToComplex16!
mxCopyPtrToComplex8!
mxCopyPtrToIntegeri!
mxCopyPtrToInteger2!
mxCopyPtrToInteger4!
mxCopyPtrToPtrArray!
mxCopyPtrToReal4!
mxCopyPtrToReal8!
mxCopyReal4ToPtr!
mxCopyReal8ToPtr!
mxCreateCellArray
mxCreateCellMatrix
mxCreateCharArray
mxCreateCharMatrixFromStrings
mxCreateDoubleMatrix
mxCreateLogicalArray?
mxCreateLogicalMatrix?
mxCreateNumericArray
mxCreateNumericMatrix

mxCreateSparse

Fortran function only

2C function only

mxGetField
mxGetFieldByNumber
mxGetIr

mxGetdJc

mxGetM

mxGetN
mxGetNumberOfDimensions
mxGetNumberOfElements
mxGetNzmax
mxGetProperty
mxGetString
mxMalloc

mxRealloc
mxSetCell
mxSetDimensions
mxSetField
mxSetFieldByNumber
mxSetIr

mxSetdJdc

mxSetM

mxSetN

mxSetNzmax

mxSetProperty

5-27

5 Creating Fortran MEX-Files

5-28

Functions in this API use the mvIndex, mwSize, and mwPointer preprocessor
macros. For information about using these macros, see “Required Header
Files” on page 5-4.

Building the Binary MEX-File

Use the mex build script option -largeArrayDims with the 64-bit API.

Caution Using Negative Values

When using the 64-bit API, mwSize and mwIndex are equivalent to INTEGER*8
in Fortran. This type is unsigned, unlike INTEGER*4, which is the type used in
the 32-bit API. Be careful not to pass any negative values to functions that
take mwSize or mwIndex arguments. Do not cast negative INTEGER*4 values to
mwSize or mwIndex; the returned value cannot be predicted. Instead, change
your code to avoid using negative values.

Building Cross-Platform Applications

If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as INTEGER*4 in Fortran. Be careful to
avoid assigning a large mwSize or mwIndex value to an INTEGER*4 or other
variable that might be too small.

Memory Management

Memory Management

When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

Consequently, any misconstructed arrays left over at the end of a binary
MEX-file’s execution have the potential to cause memory errors.

In general, we recommend that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is more
efficient to perform this cleanup in the source MEX-file than to rely on the
automatic mechanism. For additional information on memory management
techniques, see the sections “Memory Management” on page 4-41 in Creating
C/C++ Language MEX-Files and “Memory Management Issues” on page 3-43.

5-29

5 Creating Fortran MEX-Files

5-30

Calling MATLAB Software

from C and Fortran
Programs

¢ “Using the MATLAB Engine to Call MATLAB Software from C/C++ and
Fortran Programs” on page 6-2

¢ “Examples of Calling Engine Functions” on page 6-5

¢ “Compiling and Linking MATLAB Engine Programs” on page 6-10

6 Calling MATLAB® Software from C and Fortran Programs

Using the MATLAB Engine to Call MATLAB Software from
C/C++ and Fortran Programs

In this section...

“Introduction to MATLAB Engine” on page 6-2
“The Engine Library” on page 6-3
“GUI-Intensive Applications” on page 6-4

Introduction to MATLAB Engine

The MATLAB engine library contains routines that allow you to call
MATLAB software from your own programs, thereby employing MATLAB as
a computation engine. Engine programs are standalone C/C++ or Fortran
programs that communicate with a separate MATLAB process via pipes, on
UNIX systems, and through a Microsoft Component Object Model (COM)
interface, on Microsoft Windows systems. MATLAB provides a library of
functions that allows you to start and end the MATLAB process, send data to
and from MATLAB, and send commands to be processed in MATLAB.

Some of the things you can do with the MATLAB engine are

¢ (Call a math routine, for example, to invert an array or to compute an FFT
from your own program. When employed in this manner, MATLAB is a
powerful and programmable mathematical subroutine library.

¢ Build an entire system for a specific task, for example, radar signature
analysis or gas chromatography, where the front end (GUI) is programmed
in C/C++ and the back end (analysis) is programmed in MATLAB, which
can shorten development time.

The MATLAB engine operates by running in the background as a separate
process from your own program. This offers several advantages:

¢ On UNIX systems, the engine can run on your machine, or on any other
UNIX machine on your network, including machines of a different
architecture. This allows you to implement a user interface on your
workstation and perform the computations on a faster machine located

Using the MATLAB® Engine to Call MATLAB® Software from C/C++ and Fortran Programs

elsewhere on your network. For more information, see the engOpen

reference page.

¢ Instead of requiring your program to link to the entire MATLAB program
(a substantial amount of code), it links to a smaller engine library.

The MATLAB engine cannot read MAT-files in a format based on HDF5.
These are MAT-files saved using the -v7.3 option of the save function or
opened using the w7.3 mode argument to the C or Fortran matOpen function.

Note To run MATLAB engine on the UNIX platform, you must have the
C shell csh installed at /bin/csh.

The Engine Library
The engine library is part of the MATLAB C/C++ and Fortran API Reference.

It contains routines for controlling the computation engine. The function
names begin with the three-letter prefix eng.

MATLAB libraries are not thread-safe. If you create multithreaded
applications, make sure only one thread accesses the engine application.

C Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the engine

engPutVariable Send a MATLAB array to the engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

engOpenSingleUse Start a MATLAB engine session for single,
nonshared use

engGetVisible Determine visibility of MATLAB engine session

engSetVisible Show or hide MATLAB engine session

6 Calling MATLAB® Software from C and Fortran Programs

Fortran Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine
engGetVariable Get a MATLAB array from the engine
engPutVariable Send a MATLAB array to the engine
engEvalString Execute a MATLAB command
engOutputBuffer Create a buffer to store MATLAB text output

Engine programs also use the MX Matrix Library in the C/C++ and Fortran
API reference. For more information, see Chapter 4, “Creating C/C++
Language MEX-Files” and Chapter 5, “Creating Fortran MEX-Files”.

Communicating with MATLAB Software

On UNIX systems, the engine library communicates with the engine using
pipes, and, if needed, rsh for remote execution. On Microsoft Windows
systems, the engine library communicates with the engine using a Component
Object Model (COM) interface. For more information, see Chapter 9, “COM
Support for MATLAB Software”.

GUIl-Intensive Applications

If you have graphical user interface (GUI) intensive applications that execute
a lot of callbacks through the MATLAB engine, you should force these
callbacks to be evaluated in the context of the base workspace. Use evalin to
specify that the base workspace be used in evaluating the callback expression,
as follows:

engEvalString(ep, "evalin('base', expression)")

Specifying the base workspace in this manner ensures MATLAB processes
the callback correctly and returns results for that call.

This does not apply to computational applications that do not execute
callbacks.

Examples of Calling Engine Functions

Examples of Calling Engine Functions

In this section...

“Overview” on page 6-5

“Calling MATLAB Software from a C Application” on page 6-5
“Calling MATLAB Software from a C++ Application” on page 6-7
“Calling MATLAB Software from a Fortran Application” on page 6-7
“Attaching to an Existing MATLAB Session” on page 6-8

Overview

The matlabroot/extern/examples/eng_mat folder contains C, C++, and
Fortran source code for examples demonstrating how to use the MATLAB
engine. These examples create standalone programs. matlabroot represents
the top-level folder where MATLAB is installed on your system

This section describes steps you must follow when using the engine functions.
For example, before using engPutVariable, you must create a matrix and
populate it.

After reviewing these examples, follow the instructions in “Compiling and

Linking MATLAB Engine Programs” on page 6-10 to build the application

and test it. You can test that your system is properly configured for engine
applications by building and running an application.

Calling MATLAB Software from a C Application

The program, engdemo.c, illustrates how to call the engine functions from a
stand alone C program. For the Microsoft Windows version of this program,
see engwindemo.c.

To see engdemo.c, open this file in MATLAB Editor.

To see the Windows version engwindemo.c, open this file.

The first part of this program launches MATLAB and sends it data. MATLAB
analyzes the data and plots the results.

6-5

6 Calling MATLAB® Software from C and Fortran Programs

Flz W oeea bo: |

4
A HE S

The program continues with:

Press Return to continue

Pressing Return continues the program:

Done for Part I.
Enter a MATLAB command to evaluate. This command should
create a variable X. This program will then determine
what kind of variable you created.
For example: X = 1:5
Entering X = 17.5 continues the program execution.
X =17.5
X =

17.5000

Retrieving X...
X is class double
Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

6-6

Examples of Calling Engine Functions

Calling MATLAB Software from a C++ Application

There is a C++ version of engdemo in the
matlabroot\extern\examples\eng mat folder. To see engdemo.cpp,
open this file.

Calling MATLAB Software from a Fortran Application

The program, fengdemo.F, illustrates how to call the engine functions from a
stand alone Fortran program. To see the code, open this file.

Executing this program launches MATLAB, sends it data, and plots the
results.

e lars e
' '

The program continues with:

Type 0 <return> to Exit
Type 1 <return> to continue

Entering 1 at the prompt continues the program execution:

1
MATLAB computed the following distances:
time(s) distance(m)
1.00 -4.90
2.00 -19.6

6 Calling MATLAB® Software from C and Fortran Programs

3.00 -44 .1
4.00 -78.4
5.00 -123.
6.00 -176.
7.00 -240.
8.00 -314.
9.00 -397.
10.0 -490.

Finally, the program frees memory, closes the MATLAB engine, and exits.

Attaching to an Existing MATLAB Session

You can make an engine program attach to a MATLAB session that is already
running by starting the MATLAB session with /Automation in the command
line. When you call engOpen, it connects to this existing session. You should
only call engOpen once, because any engOpen calls now connect to this one
MATLAB session.

The /Automation option also causes the command window to be minimized.
You must open it manually.

Note For more information on the /Automation command-line argument, see
“Additional Automation Server Information” on page 11-13. For information
about the Component Object Model interfaces used by MATLAB, see
“Introducing MATLAB COM Integration” on page 9-2.

For example,

1 Shut down any MATLAB sessions.
2 From the Start button on the Windows menu bar, click Run.
3 In the Open field, type:

d:\matlab\bin\win32\matlab.exe /Automation

or:

Examples of Calling Engine Functions

d:\matlab\bin\win64\matlab.exe /Automation

where d:\matlab\bin\win32 or d:\matlab\bin\win64 represents the
path to the MATLAB executable.

4 Click OK. This starts MATLAB.

5 In MATLAB, change directories to
matlabroot/extern/examples/eng_mat.

6 Compile the engwindemo.c example.
7 Run the engwindemo program by typing at the MATLAB prompt:

lengwindemo

This does not start another MATLAB session, but rather uses the MATLAB
session that is already open.

Note On the UNIX platform, you cannot make an engine program connect to
an existing MATLAB session.

6 Calling MATLAB® Software from C and Fortran Programs

6-10

Compiling and Linking MATLAB Engine Programs

In this section...

“Write Your Application” on page 6-10

“Check Required Libraries and Files” on page 6-10

“Build the Application” on page 6-13

“Set Run-Time Library Path” on page 6-14

“Select MATLAB Version” on page 6-16

“Register MATLAB Software as a COM Server” on page 6-16
“Test the Program” on page 6-16

“Example — Building an Engine Application on Windows System” on page
6-17

“Example — Building an Engine Application on UNIX Systems” on page
6-17

Write Your Application

Write your application in C/C++ or Fortran using any of the engine routines
to perform computations in MATLAB. For more information, see “Using
the MATLAB Engine to Call MATLAB Software from C/C++ and Fortran
Programs” on page 6-2 and “Examples of Calling Engine Functions” on page
6-5.

Check Required Libraries and Files
MATLAB requires the following files for building any engine application:

e “Third-Party Libraries” on page 6-11
e “Library Files Required by libeng” on page 6-11
e “ICU Data Files” on page 6-12

Compiling and Linking MATLAB® Engine Programs

Third-Party Libraries

Verify that the required libraries are installed. Use the following table to
identify the path and library filename. Replace 1ibfile with each of these
filenames:

libeng
libmx
Operating
System Library Path and Filename
Linux matlabroot/bin/glnx86/1ibfile.so
64-bit Linux matlabroot/bin/glnxa64/1libfile.so

Apple Macintosh matlabroot/bin/maci/libfile.dylib
(Intel)

64-bit Macintosh matlabroot/bin/maci64/1ibfile.dylib
Microsoft Windows | matlabroot\bin\win32\1ibfile.d1l1l
64-bit Windows matlabroot\bin\win64\1ibfile.dl1ll

Library Files Required by libeng

The 1libeng library requires additional third-party library files. MATLAB
uses these libraries to support Unicode character encoding and data
compression in MAT-files.

These library files must reside in the same folder as 1ibmx. You can determine
what most of these libraries are using the platform-specific commands shown
here.

Operating

System Library Path and Filename
Linux ldd -d libeng.so
Macintosh otool -L libeng.dylib
Windows See the following instructions

6-11

6 Calling MATLAB® Software from C and Fortran Programs

On Windows systems, the third-party product Dependency Walker can be

used to diagnose errors related to loading and executing modules. Dependency
Walker is a free utility that scans any 32-bit or 64-bit Windows module and

builds a hierarchical tree diagram of all dependent modules. For each module
found, it lists all the functions that are exported by that module, and which of
those functions are actually being called by other modules. You can download

the Dependency Walker utility from the following Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L for information on using the

Dependency Walker.

Drag and drop the 1libeng.d11 file into the Depends window.

ICU Data Files

Verify that the appropriate ICU data file is installed. Systems that order
bytes in a little-endian ordering append the lowercase letter to L the file
name, shown as the character 1, not the digit 1.

Operating System

ICU File Path and Filename

Linux

matlabroot/bin/glnx86/icudt40l.dat

64-bit Linux

matlabroot/bin/glnxa64/icudt40l.dat

Macintosh (Intel)

matlabroot/bin/maci/icudt40l.dat

64-bit Macintosh
(Intel)

matlabroot/bin/maci64/icudt401l.dat

Windows

matlabroot\bin\win32\icudt40l.dat

64-bit Windows

matlabroot\bin\win64\icudt40l.dat

Note If you need to manipulate Unicode text directly in your
application, the latest version of International Components for Unicode
(ICU) is available online from the IBM Corporation Web site at
http://icu.sourceforge.net/download.

6-12

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html
http://icu.sourceforge.net/download

Compiling and Linking MATLAB® Engine Programs

Build the Application

Use the mex script to compile and link engine programs. mex has a set of
switches you can use to modify the compile and link stages. The table MEX
Script Switches on page 3-50 lists the available switches and their uses.

MEX Options File

MATLAB supplies an options file to facilitate building MEX applications. This
file contains compiler-specific flags that correspond to the general compile,
prelink, and link steps required on your system. If you want to customize the
build process, you can modify this file.

Different options files are provided for UNIX and Windows operating systems.

Operating

System Default Options File

UNIX matlabroot/bin/engopts.sh

Windows matlabroot\bin\win32\mexopts*engmatopts.bat
64-bit Windows matlabroot\bin\win64\mexopts*engmatopts.bat

On Windows systems, the options file depends on which compiler you use. The
name of the options file is prefixed with a string representing the compiler
and compiler version it is used with.

For example, to locate the options file on a Windows 32-bit system, type:

dir([matlabroot '\bin\win32\mexopts*engmatopts.bat'])

If you need to modify the options file for your particular compiler, use the mex
command with the -v switch to view the current compiler and linker settings,
and then make the appropriate changes in the options file.

Build the Application
To build your engine application, use the mex script with the options filename
and the name of your MEX-file.

6-13

6 Calling MATLAB® Software from C and Fortran Programs

6-14

UNIX Operating Systems. Enter the following command, where
mexfilename is the name of your C/C++ or Fortran program. Enclose
mexfilename in single quotation marks.

mex('-f', [matlabroot '/bin/engopts.sh'], mexfilename) ;

Alternatively, copy the options file to your current working folder, and then
enter the following command:

mex -f engopts.sh mexfilename

Windows Operating Systems. Enter the following command, where
mexfilename is the name of your C/C++ or Fortran program. Enclose
mexfilename in single quotation marks. This example uses the Lcc compiler.
Be sure to use the appropriate options file for your compiler.

mex('-f', [matlabroot
"\bin\win32\mexopts\lccengmatopts.bat'], mexfilename);

Alternatively, copy the options file to your current working folder, and then
enter the following command:

mex -f lccengmatopts.bat mexfilename

Set Run-Time Library Path

At run-time, you need to tell the system where the API shared libraries reside.

UNIX Operating Systems

Set the library path as follows for the C and Bourne shells. In the commands
shown, replace the terms envvar and pathspec with the appropriate values
from the table that follows.

To set the library path in the C shell, type:

setenv envvar pathspec

In the Bourne shell, type:

envvar = pathspec:envvar export envvar

Compiling and Linking MATLAB® Engine Programs

Operating

System envvar pathspec

Linux LD _LIBRARY_PATH matlabroot/bin/glnx86:
matlabroot/sys/os/glnx86

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

Apple DYLD_LIBRARY_PATH matlabroot/bin/maci:

Macintosh matlabroot/sys/os/maci

(Intel)

64-bit DYLD_LIBRARY_PATH matlabroot/bin/maci64:

Macintosh matlabroot/sys/os/maci64

(Intel)

Windows Operating Systems

Set the Path environment variable to the path string returned by MATLAB in
response to the following expression:

[matlabroot '\bin\win32']
or:
[matlabroot '\bin\win64']

To set an environment variable in a Windows system, select

Start > Settings > Control Panel > System. The System Properties dialog
box is displayed. Click the Advanced tab, and then the Environment
Variables button.

In the System variables panel scroll down until you find the Path variable.
Click this variable to highlight it, and then click the Edit button to open
the Edit System Variable dialog box. At the end of the path string, enter a
semicolon and then the path string returned by evaluating the expression
shown above in MATLAB. Click OK in the Edit System Variable dialog box,
and in all remaining dialog boxes.

6-15

6 Calling MATLAB® Software from C and Fortran Programs

6-16

Select MATLAB Version

If you have multiple versions of MATLAB installed on your Windows
operating system, the version you use to build your engine applications must
be the first listed in your system PATH environment variable. If the MATLAB
version you use to build the application is not the first listed on the path, you
may see the following error:

Can't start MATLAB engine

For information about accessing the PATH environment variable through the
Windows Control Panel, see the “Windows Operating Systems” on page 6-15
topic in Set Run-Time Library Path.

Register MATLAB Software as a COM Server

To run this program on a Windows operating system, you need to have
MATLAB registered as a COM server on your system. This registration is
part of the MATLAB installation and should have already been done for you
as part of the installation. If, for some reason, the registration was not done
or did not complete successfully, you may see the following error displayed
when you try to run this example:

Can't start MATLAB engine

If you see this error, manually register MATLAB as a server by entering the
following commands in a DOS command window:

cd matlabroot\bin\win32
matlab /regserver

or:

cd matlabroot\bin\win64
matlab /regserver

Close the MATLAB window that appears.

Test the Program
Test your application in MATLAB by typing:

Compiling and Linking MATLAB® Engine Programs

lengwindemo

Example — Building an Engine Application on
Windows System

MATLAB provides a demonstration program written in C that you can use
to verify the build process on your computer. The demo file for Windows
systems is engwindemo.c.

Copy the C language MEX-file engwindemo. c to your current working folder:

demofile = [matlabroot '\extern\examples\eng mat\engwindemo.c'];
copyfile(demofile, '.');

Look in the \bin\win32\mexopts folder for the appropriate options file for
the Lee compiler. Use the following commands to build the executable file
using this compiler:

optsfile = [matlabroot '\bin\win32\mexopts\lccengmatopts.bat'];
mex('-f', optsfile, 'engwindemo.c');

Verify that the build worked by looking in your current working folder for the
file engwindemo.exe:

dir engwindemo.exe

To run the demo from MATLAB, make sure your current working folder is set
to the one in which you built the executable file, and then type:

lengwindemo

Note Use the Lce or Microsoft Visual C++ compiler to build engwindemo. exe.
The source code in engwindemo. ¢ is not supported for other compilers.

Example — Building an Engine Application on UNIX
Systems

MATLAB software provides demonstration programs written in C and C++
that you can use to verify the build process on your computer. The demo files
for UNIX systems are engdemo.c and engdemo.cpp.

6-17

6 Calling MATLAB® Software from C and Fortran Programs

6-18

Copy one of the demonstration programs, for example, engdemo.c, to your
current working folder:

demofile = [matlabroot '/extern/examples/eng mat/engdemo.c'];
copyfile(demofile, '.');

Build the executable file using the ANSI compiler for engine stand alone
programs and the options file engopts.sh:

optsfile = [matlabroot '/bin/engopts.sh'];
mex('-f', optsfile, 'engdemo.c');

Verify that the build worked by looking in your current working folder for
the file engdemo:

dir engdemo

To run the demo in MATLAB, make sure your current working folder is set to
the one in which you built the executable file, and then type:

lengdemo

7

Using Sun Java Classes in
MATLAB Software

® “Product Overview” on page 7-2

* “Bringing Java Classes and Methods into MATLAB Workspace” on page 7-6
e “Creating and Using Java Objects” on page 7-16

* “Invoking Methods on Java Objects” on page 7-25

e “Working with Java Arrays” on page 7-35

® “Passing Data to a Java Method” on page 7-53

e “Handling Data Returned from a Java Method” on page 7-64

e “Introduction to Programming Examples” on page 7-71

e “Example — Reading a URL” on page 7-72

¢ “Example — Finding an Internet Protocol Address” on page 7-75
e “Example — Creating and Using a Phone Book” on page 7-77

7 Using Sun™ Java™ Classes in MATLAB® Software

7-2

Product Overview

In this section...

“Sun Java Interface Is Integral to MATLAB Software” on page 7-2
“Benefits of the MATLAB Java Interface” on page 7-2

“Who Should Use the MATLAB Java Interface” on page 7-2

“To Learn More About Java Programming Language” on page 7-3

“Platform Support for JVM Software” on page 7-3

“Using a Different Version of JVM Software” on page 7-4

Sun Java Interface Is Integral to MATLAB Software

Every installation of MATLAB software includes Java Virtual Machine (JVM)
software, so that you can use the Java interpreter via MATLAB commands,
and you can create and run programs that create and access Java objects.
For information on the MATLAB installation, see the MATLAB installation
documentation for your platform.

Benefits of the MATLAB Java Interface
The MATLAB Java interface enables you to:

e Access Java API (application programming interface) class packages that
support essential activities such as I/0 and networking. For example, the
URL class provides convenient access to resources on the Internet.

e Access third-party Java classes

¢ Easily construct Java objects in MATLAB workspace

e (Call Java object methods, using either Java or MATLAB syntax
¢ Pass data between MATLAB variables and Java objects

Who Should Use the MATLAB Java Interface

The MATLAB Java interface is intended for all MATLAB users who want to
take advantage of the special capabilities of the Java programming language.

Product Overview

For example:
® You need to access, from MATLAB, the capabilities of available Java
classes.

® You are familiar with object-oriented programming in Java or in another
language, such as C++.

® You are familiar with Object-Oriented Programming, or with MATLAB
MEX-files.

To Learn More About Java Programming Language

For a complete description of the Java language and for guidance in
object-oriented software design and programming, you’ll need to consult

outside resources. For example, these recently published books might be
helpful:

® Java in a Nutshell (Fourth Edition), by David Flanagan
e Teach Yourself Java in 21 Days, by Lemay and Perkins

Another place to find information is the JavaSoft Web site.
http://www.javasoft.com
For other suggestions on object-oriented programming resources, see:

® Object-Oriented Software Construction, by Bertrand Meyer

e Object-Oriented Analysis and Design with Applications, by Grady Booch,
Robert A. Maksimchuk, Michael W. Engel, and Alan Brown

Platform Support for JVM Software

To find out which version of JVM software is used by MATLAB on your
platform, type the following at the MATLAB prompt:

version -java

7-3

http://www.javasoft.com

7 Using Sun™ Java™ Classes in MATLAB® Software

7-4

Using a Different Version of JVM Software

MATLAB ships with one specific version of the JVM software on all operating
systems, except Apple Mac OS® X operating systems. On Mac OS X systems,
MATLAB uses the JVM software provided with the operating system.

Note MATLAB is only fully supported on these versions of the JVM software.
Some components might not work properly under a different version of the
JVM software. For example, calling functions in a dynamically linked library
that was created with a different JVM software version than that used by
MATLAB might cause a segmentation violation error message.

To change the JVM software version:

1 “Download the JVM Software Version You Want to Use” on page 7-4.
2 “Locate the Root of the Run-time Path for this Version” on page 7-4.

3 “Set the MATLAB_JAVA Environment Variable to this Path” on page 7-5.

To verify that MATLAB is using the correct version of the JVM software,
type the version -java command.

Download the JVM Software Version You Want to Use
You can download JVM software from the Web site .

Locate the Root of the Run-time Path for this Version

To get MATLAB to use the version you have just downloaded, you must first
find the root of the run-time path for this JVM software version, and then
set the MATLAB_JAVA environment variable to that path. To locate the JVM
run-time path, find the directory in the Java installation tree that is one level
up from the directory containing the file rt.jar. This might be a folder of the
main Sun™ JDK™ install directory. (If you cannot find rt.jar, look for

the file classes.zip.)

Product Overview

For example, if the JDK software is installed in D: \ jdk1.2.1 on a Microsoft
Windows system and the rt.jar file 1s in D:\jdk1.2.1\jre\1lib, set
MATLAB_JAVA to the directory one level up from that: D:\jdk1.2.1\jre.

On a UNIX system, if the JDE software 1s installed in
/usr/openv/java/jre/lib and the rt.jar isin /usr/openv/java/jre/lib,
set MATLAB_JAVA to the path /usr/openv/java/jre.

Set the MATLAB_JAVA Environment Variable to this Path
The way you set or modify the value of the MATLAB_JAVA variable depends on
which platform you are running MATLAB on.

Windows XP Operating System.
1 Click Settings in the Start Menu.
2 Choose Control Panel.

3 Click System.

4 Choose the Advanced tab, and then click the Environment Variables
button.

5 You now can set (or add) the MATLAB_JAVA system environment variable
to the path of your JVM software.

UNIX or Linux Operating Systems.

setenv MATLAB_JAVA <path to JVM>

7 Using Sun™ Java™ Classes in MATLAB® Software

Bringing Java Classes and Methods into MATLAB

Workspace

In this section...

“Introduction” on page 7-6

“Sources of Java Classes” on page 7-6

“Defining New Java Classes” on page 7-7

“The Java Class Path” on page 7-7

“Making Java Classes Available in MATLAB Workspace” on page 7-10
“Loading Java Class Definitions” on page 7-12

“Simplifying Java Class Names” on page 7-13

“Locating Native Method Libraries” on page 7-14

“Java Classes Contained in a JAR File” on page 7-14

Introduction

You can draw from an extensive collection of existing Sun Java classes or
create your own class definitions to use with MATLAB software. This section
explains how to go about finding the class definitions that you need or how
to create classes of your own design. Once you have the classes you need,
defined in either individual .class files, packages, or Java Archive (JAR)
files, you can make them available in the MATLAB workspace. This section
also describes how to specify the native method libraries used by Java code.

Sources of Java Classes

Following are Java class sources that you can use in the MATLAB workspace:

e Java built-in classes — general-purpose class packages, such as java.util,
included in the Java language. See your Java language documentation
for descriptions of these packages.

¢ Third-party classes — packages of special-purpose Java classes.

Bringing Java™ Classes and Methods into MATLAB® Workspace

e User-defined classes — Java classes or subclasses of existing classes that
you define. You need to use a Java language development environment to
do this, as explained in the following section.

Defining New Java Classes

To define new Java classes and subclasses of existing classes, you must

use a Java language development environment external to MATLAB
software. For information on supported versions of the Java Development
Kit (JDK) software, see the Supported and Compatible Compilers Web

page. You can download the JDK from the Sun Microsystems™ Web site,
(http://java.sun.com/j2se/). The Sun site also provides documentation for
the Java language and classes that you need for development.

After you create class definitions in . java files, use your Java compiler to
produce .class files from them. The next step is to make the class definitions
in those .class files available for you to use in MATLAB.

The Java Class Path

MATLAB loads Java class definitions from files that are on the Java class
path. The class path is a series of file and directory specifications that
MATLAB software uses to locate class definitions. When loading a particular
Java class, MATLAB searches files and directories in the order they occur on
the class path until a file is found that contains that class definition. The
search ends when the first definition is found.

The Java class path consists of two segments: the static path and the dynamic
path. MATLAB loads the static path at startup. If you change the path you
must restart MATLAB. You can load and modify the dynamic path at any
time using MATLAB functions. MATLAB always searches the static path
before the dynamic path.

Note Java classes on the static path should not have dependencies on classes
on the dynamic path.

http://www.mathworks.com/support/compilers/current_release/
http://java.sun.com/j2se/

7 Using Sun™ Java™ Classes in MATLAB® Software

You can view these two path segments using the javaclasspath function:

javaclasspath

STATIC JAVA PATH

o

:\SysO\Java\util.jar
:\SysO\Java\widgets.jar
:\Sys0\Java\beans. jar

O O

DYNAMIC JAVA PATH

(@]

:\Work\Java\ClassFiles
:\Work\Java\mywidgets.jar

(@]

You probably want to use both the static and dynamic paths:

® Put the Java class definitions that are more stable on the static class
path. Classes defined on the static path load somewhat faster than those
on the dynamic path.

® Put the Java class definitions that you are likely to modify on the dynamic
class path. You can make changes to the class definitions on this path
without restarting MATLAB.

The Static Path

MATLAB loads the static class path from the classpath.txt file at the
start of each session. The static path offers better class loading performance
than the dynamic path. However, to modify the static path, you need to edit
classpath.txt, and then restart MATLAB.

Finding and Editing classpath.txt. The default classpath.txt file resides
in the matlabroot\toolbox\local folder. For example, type:

Bringing Java™ Classes and Methods into MATLAB® Workspace

[matlabroot '\toolbox\local\classpath.txt']

MATLAB displays information like:

ans =
\\sys07\matlab\toolbox\local\classpath.txt

To make changes in the static path that affect all users who share this same
MATLAB root directory, edit this file in toolbox\local. If you want to make
changes that do not affect anyone else, copy classpath.txt to your own
startup directory and edit the file there. When MATLAB starts up, it looks
for classpath.txt first in your startup directory, and then in the default
location. It uses the first file it finds.

To see which classpath.txt file is currently being used by your MATLAB
environment, use the which function:

which classpath.txt

To edit either the default file or the copy in your own directory, type:

edit classpath.txt

Note MATLAB reads classpath.txt only at startup. If you edit
classpath.txt or change your .class files while MATLAB is running, you
must restart MATLAB to put those changes into effect.

The Dynamic Path

The dynamic class path can be loaded any time during a MATLAB software
session using the javaclasspath function. You can define the dynamic
path (using javaclasspath), modify the path (using javaaddpath and
javarmpath), and refresh the Java class definitions for all classes on the
dynamic path (using clear with the keyword java) without restarting
MATLAB. See the Java function reference pages for more information on
how to use these functions.

The functions javaaddpath and javaclasspath(dpath) add entries to the
dynamic class path. To avoid the possibility that the new path contains a class

7 Using Sun™ Java™ Classes in MATLAB® Software

7-10

or package with the same name as an existing class or package, MATLAB
clears all existing global variables and variables in the workspace.

Although the dynamic path offers more flexibility in changing the path,
Java classes on the dynamic path might load more slowly than those on the
static path.

Making Java Classes Available in MATLAB
Workspace

To make your third-party and user-defined Java classes available in the
MATLAB workspace, place them on either the static or dynamic Java class
path, as described in the previous section, “The Java Class Path” on page 7-7.

® For classes you want on the static path, edit the classpath.txt file.

® For classes you want on the dynamic path, use either the javaclasspath
or the javaaddpath functions.

Making Individual (Unpackaged) Classes Available

To make individual classes (classes that are not part of a package) available
in MATLAB, specify the full path to the directory you want to use for the
.class file(s).

For example, to make available your compiled Java classes in the file
d:\work\javaclasses\test.class, add the following entry to the static
or dynamic class path:

d:\work\javaclasses

To put this directory on the static class path, add the above line to the default
copy (in toolbox\local) or your own local copy of classpath.txt. See
“Finding and Editing classpath.txt” on page 7-8.

To put this on the dynamic class path, use the following command:

javaaddpath d:\work\javaclasses

Bringing Java™ Classes and Methods into MATLAB® Workspace

Making Entire Packages Available

To access one or more classes belonging to a package, you need to make the
entire package available to MATLAB. To do this, specify the full path to
the parent directory of the highest level directory of the package path. This
directory is the first component in the package name.

For example, if your Java class package com.mw.tbx.ini has its classes in
directory d: \work\com\mw\tbx\ini, add the following directory to your static
or dynamic class path:

d:\work

Making Classes in a JAR File Available

You can use the jar (Java Archive) tool to create a JAR file, containing
multiple Java classes and packages in a compressed ZIP format. For
information on jar and JAR files, consult your Java development
documentation or the JavaSoft Web site http://www.javasoft.com. See also
“To Learn More About Java Programming Language” on page 7-3.

To make the contents of a JAR file available for use in MATLAB, specify the
full path, including full file name, for the JAR file. You can also put the JAR
file on the MATLAB path. The JAR file name must match the package name
specified in the original Java files. If the names do not match, MATLAB
displays an Undefined variable message.

Note The classpath.txt requirement for JAR files is different than that for
.class files and packages, for which you do not specify any filename.

For example, to make available the JAR file e:\java\classes\utilpkg.jar,
add the following file specification to your static or dynamic class path:

e:\java\classes\utilpkg.jar

Loading a Class Using Java Class.forName Method

Use the javaObject function instead of the Java Class.forName method. For
example, replace the following statement:

7-11

http://www.javasoft.com

7 Using Sun™ Java™ Classes in MATLAB® Software

java.lang.Class.forName('xyz.myapp.MyClass')
with:

javaObject('xyz.myapp.MyClass')

Loading Java Class Definitions

Normally, MATLAB software loads a Java class automatically when your
code first uses it, (for example, when you call its constructor). However, there
1s one exception you should be aware of.

When you use the which function on methods defined by Java classes,

the function only acts on the classes currently loaded into the MATLAB
workspace. In contrast, which always operates on MATLAB classes, whether
or not they are loaded.

Determining Which Classes Are Loaded

At any time during a MATLAB software session, you can obtain a listing
of all the Java classes that are currently loaded. To do so, use the inmem
function as follows:

[M,X,d] = inmem
This function returns the list of Java classes in the output argument J. (It
also returns the names of all currently loaded MATLAB functions in M, and
the names of all currently loaded MEX-files in X.)
Here’s a sample of output from the inmem function:

[m,x,j] = inmem;
MATLAB displays:

j =

‘java.util.Date'
‘com.mathworks.ide.desktop.MLDesktop'

7-12

Bringing Java™ Classes and Methods into MATLAB® Workspace

Simplifying Java Class Names

Your MATLAB commands can refer to any Java class by its fully qualified
name, which includes its package name. For example, the following are fully
qualified names:

® java.lang.String

® java.util.Enumeration

A fully qualified name can be rather long, making commands and functions,
such as constructors, cumbersome to edit and to read. You can refer to classes

by the class name alone (without a package name) if you first import the
fully qualified name into MATLAB.

The import command has the following forms:

o°

import pkg_name.* Import all classes in package
import pkg_namel.* pkg name2.* % Import multiple packages
import class_name Import one class

import Display current import list

L = import Return current import list

o® of

o°

MATLAB adds all classes that you import to a list called the import list.
You can see what classes are on that list by typing import, without any
arguments. Your code can refer to any class on the list by class name alone.

When called from a function, import adds the specified classes to the import
list in effect for that function. When invoked at the command prompt, import
uses the base import list for your MATLAB software environment.

For example, suppose a function contains the following statements:
import java.lang.String

import java.util.* java.awt.*
import java.util.Enumeration

7-13

7 Using Sun™ Java™ Classes in MATLAB® Software

7-14

Any code that follows these import statements can refer to the String, Frame,
and Enumeration classes without using the package names. For example:

str = String('hello'); %
frm = Frame;
methods Enumeration

Create java.lang.String object
Create java.awt.Frame object
List java.util.Enumeration methods

o°

o°

To clear the list of imported Java classes, type:

clear import

Locating Native Method Libraries

Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). In order for the Sun JVM
software to locate the specified library file, the directory containing it must
be on the Java Library Path. This path is established when the MATLAB

software launches the JVM software at startup, and is based on the contents
of the file:

matlabroot/toolbox/local/librarypath.txt

You can augment the search path for native method libraries by editing the
librarypath.txt file. Follow these guidelines when editing this file:

® Specify each new directory on a line by itself.

® Specify only the directory names, not the names of the DLL files. The
loadLibrary call does this for you.

¢ To simplify the specification of directories in cross-platform environments,
use any of these macros: $matlabroot, $arch, and $jre_home.

You can create localized versions of the librarypath.txt file in your
MATLAB startup directory if launching via a desktop icon, or in the current
directory if launching from the command line.

Java Classes Contained in a JAR File

You can access Java classes that are contained in a JAR file once you have
added the JAR file to either the static or dynamic class path. See “The Java
Class Path” on page 7-7 for more information on how MATLAB software uses
the Java class path.

Bringing Java™ Classes and Methods into MATLAB® Workspace

For example, suppose you have a file, myArchive.jar, in a directory called
work in your MATLAB root directory. You can construct the path to this
file using the matlabroot command:

[matlabroot '/work/myArchive.jar']

Add the JAR file to your dynamic class path using the javaaddpath function
(fullfile adds the platform-correct directory separators):

javaaddpath(fullfile(matlabroot, 'work', 'myArchive.jar'))

You can now call the public methods in the JAR file.

7-15

7 Using Sun™ Java™ Classes in MATLAB® Software

7-16

Creating and Using Java Objects

In this section...

“Overview” on page 7-16

“Constructing Java Objects” on page 7-16

“Concatenating Java Objects” on page 7-19

“Saving and Loading Java Objects to MAT-Files” on page 7-20
“Finding the Public Data Fields of an Object” on page 7-21
“Accessing Private and Public Data” on page 7-22
“Determining the Class of an Object” on page 7-23

Overview

You create a Sun Java object in the MATLAB workspace by calling one of
the constructors of that class. You then use commands and programming
statements to perform operations on these objects. You can also save your
Java objects to a MAT-file and, in subsequent sessions, reload them into
MATLAB.

Constructing Java Objects

You construct Java objects in the MATLAB workspace by calling the Java
class constructor, which has the same name as the class. For example, the
following constructor creates a myDate object:

myDate = java.util.Date

MATLAB displays information similar to:

myDate =
Thu Aug 23 12:58:54 EDT 2007

All of the programming examples in this chapter contain Java object
constructors. For example, the code in the Example — Reading a URL creates
a java.net.URL object with the constructor:

url = java.net.URL(...

Creating and Using Java™ Obijects

'http://archive.ncsa.uiuc.edu/demoweb/ ")

Using the javaObject Function

Under certain circumstances, you might need to use the javaObject function
to construct a Java object. The following syntax invokes the Java constructor
for class, class_name, with the argument list that matches x1,...,xn, and
returns a new object, J.

J = javaObject('class_name',x1,...,xn);

For example, to construct and return a Java object of class java.lang.String,
type:

strObj = javaObject('java.lang.String', 'hello');
With the javaObject function you can:

¢ Use classes that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

e Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the
input class name be longer than namelengthmax characters. (A class name
segment 1s any portion of the class name before, between, or after a dot.

For example, there are three segments in class, java.lang.String.) Any
class name segment that exceeds namelengthmax characters is truncated by
MATLAB. In the rare case where you need to use a class name of this length,
you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the
object being constructed at run-time. In this situation, you call javaObject
with a string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

7-17

7 Using Sun™ Java™ Classes in MATLAB® Software

7-18

In the usual case, when the class to instantiate is known at development time,
1t 1s more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, type:

strObj = java.lang.String('hello');

Use the javaObject function instead of the Java Class.forName method. For
example, replace the following statement:

java.lang.Class.forName('xyz.myapp.MyClass"')
with:

javaObject('xyz.myapp.MyClass')

Note Typically, you do not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable
for most applications. Use javaObject primarily for the previously described
cases.

Java Objects Are References in MATLAB Software Applications

In MATLAB, Java objects are references and do not adhere to MATLAB
copy-on-assignment and pass-by-value rules. For example:

myDate = java.util.Date;
setHours(myDate, 10)
newDate = myDate;

In this example, the variable newDate is a reference to myDate, not a copy of
the object. Any change to the object referenced by newDate also changes the
object at myDate. This happens if the object is changed by MATLAB code
or by Java code.

The following example shows that myDate and newDate are references to the
same object. When you change the hour via one reference (newDate), the
change is reflected through the other reference (myDate), as well.

setHours(newDate, 8)
myDate.getHours

Creating and Using Java™ Obijects

MATLAB displays:

ans =
8

Concatenating Java Obijects
You can concatenate Java objects in the same way that you concatenate native

MATLAB types. You use either the cat function or the [| operators to tell
MATLAB software to assemble the enclosed objects into a single object.

Concatenating Objects of the Same Class

If all of the objects being operated on are of the same Java class, the
concatenation of those objects produces an array of objects from the same
class.

In the following example, the cat function concatenates two objects of the
class java.awt.Integer. The class of the result is also java.awt.Integer.

valuel = java.lang.Integer(88);
value2 java.lang.Integer(45);
cat(1, valuel, value2)

MATLAB displays:

ans =
java.lang.Integer[]:
[88]
[45]

Concatenating Objects of Unlike Classes

When you concatenate objects of unlike classes, MATLAB finds one class
from which all of the input objects inherit, and makes the output an instance
of this class. MATLAB selects the lowest common parent in the Java class
hierarchy as the output class.

7-19

7 Using Sun™ Java™ Classes in MATLAB® Software

7-20

For example, concatenating objects of java.lang.Byte, java.lang.Integer,
and java.lang.Double creates an object of java.lang.Number, since this is
the common parent to the three input classes.

byte = java.lang.Byte(127);
integer = java.lang.Integer(52);
double = java.lang.Double(7.8);
[byte; integer; double]

MATLAB displays:

ans =
java.lang.Number[]:
[127]
[52]
[7.8000]

If there is no common, lower level parent, then the resultant class is
java.lang.Object, which is the root of the entire Java class hierarchy.

byte = java.lang.Byte(127);
point = java.awt.Point(24,127);
[byte; point]

MATLAB displays:

ans =
java.lang.Object[]:
[127]
[1x1 java.awt.Point]

Saving and Loading Java Objects to MAT-Files

Use the save function to save a Java object to a MAT-file. Use the load
function to load it back into MATLAB from that MAT-file. To save a Java
object to a MAT-file, and to load the object from the MAT-file, make sure that
the object and its class meet all of the following criteria:

® The class implements the Serializable interface (part of the Java API),
either directly or by inheriting it from a parent class. Any embedded or
otherwise referenced objects must also implement Serializable.

Creating and Using Java™ Obijects

® The definition of the class is not changed between saving and loading the
object. Any change to the data fields or methods of a class prevents the
loading (deserialization) of an object that was constructed with the old
class definition.

e EKither the class does not have any transient data fields, or the values in
transient data fields of the object to be saved are not significant. Values in
transient data fields are never saved with the object.

If you define your own Java classes, or subclasses of existing classes, you can
follow the criteria above to enable objects of the class to be saved and loaded
in MATLAB. For details on defining classes to support serialization, consult
your Java development documentation. (See also “To Learn More About Java
Programming Language” on page 7-3.)

Finding the Public Data Fields of an Object

To list the public fields that belong to a Java object, use the fieldnames
function, which takes either of these forms.

names fieldnames (obj)
names = fieldnames(obj,'-full')

Calling fieldnames without -full returns the names of all the data fields
(including inherited) on the object. With the -full qualifier, fieldnames
returns the full description of the data fields defined for the object, including
type, attributes, and inheritance information.

For example, create an Integer object with the command:
value = java.lang.Integer(0);

To see a full description of the data fields of value, type:
fieldnames(value, '-full')

MATLAB displays:

ans =
'static final int MIN_VALUE'
'static final int MAX_VALUE'
'static final java.lang.Class TYPE'

7-21

7 Using Sun™ Java™ Classes in MATLAB® Software

7-22

'static final int SIZE'

Accessing Private and Public Data

Java API classes provide accessor methods you can use to read from and,
where allowed, to modify private data fields. These are sometimes referred to
as get and set methods, respectively.

Some Java classes have public data fields, which your code can read or modify
directly. To access these fields, use the syntax object.field.

Examples

The java.awt.Frame class provides an example of access to both private and
public data fields. This class has the read accessor method getSize, which
returns a java.awt.Dimension object. The Dimension object has data fields
height and width, which are public and therefore directly accessible. For
example, to access this data, type:

frame = java.awt.Frame;
frameDim = getSize(frame);
height = frameDim.height;
frameDim.width = 42;

The programming examples in this chapter also contain calls to data
field accessors. For instance, the sample code for “Example — Finding
an Internet Protocol Address” on page 7-75 uses calls to accessors on a
java.net.InetAddress object

hostname = address.getHostName;
ipaddress = address.getHostAddress;

Accessing Data from a Static Field

In a Java language program, a static data field is a field that applies to an
entire class of objects. Static fields are most commonly accessed in relation
to the class name itself. For example, the following code accesses the TYPE
field of the Integer class by referring to it in relation to the package and class
names, java.lang.Integer, rather than an object instance.

thisType = java.lang.Integer.TYPE;

Creating and Using Java™ Obijects

In MATLAB, you can use that same syntax. Or you can refer to the TYPE
field in relation to an instance of the class. The following example creates an
instance of java.lang.Integer called value, and then accesses the TYPE field
using the name value rather than the package and class names.

value = java.lang.Integer(0);
thatType = value.TYPE

MATLAB displays:

thatType =
int

Assigning to a Static Field

You can assign values to static fields by using a static set method of the class,
or by making the assignment in reference to an instance of the class. For
more information, see “Accessing Data from a Static Field” on page 7-22. You
can assign value to the field staticFieldName in the following example by
referring to this field in reference to an instance of the class.

objectName = java.className;
objectName.staticFieldName = value;

Note MATLAB does not allow assignment to static fields using the class
name itself.

Determining the Class of an Object

To find the class of a Java object, use the query form of the class function.
After execution of the following example, myClass contains the name of the
package and class that the object value instantiates.

value = java.lang.Integer(0);
myClass = class(value)

MATLAB displays:

myClass =
java.lang.Integer

7-23

7 Using Sun™ Java™ Classes in MATLAB® Software

7-24

Because this form of class also works on MATLAB objects, it does not, in
itself, tell you whether it is a Java class. To determine the type of class, use
the isjava function, which has the form:

X = isjava(obj)

isjava returns 1 if obj is a Java object, and 0 if it is not. For example, type:
isjava(value)

MATLAB displays:

ans =
1

To find out if an object is an instance of a specified class, use the isa function,
which has the form:

x = isa(obj, 'class_name')

isa returns 1 if obj is an instance of the class named 'class_name', and 0 if
it is not. Note that 'class name' can be a MATLAB built-in or user-defined
class, as well as a Java class. For example, type:

isa(value, 'java.lang.Integer')

MATLAB displays:

ans =
1

Invoking Methods on Java™ Objects

Invoking Methods on Java Objects

In this section...
“Using Java and MATLAB Calling Syntax” on page 7-25

“Invoking Static Methods on Java Classes” on page 7-27

“Obtaining Information About Methods” on page 7-28

“Java Methods That Affect MATLAB Commands” on page 7-32
“How MATLAB Software Handles Undefined Methods” on page 7-33
“How MATLAB Software Handles Java Exceptions” on page 7-34
“Method Execution in MATLAB Software” on page 7-34

Using Java and MATLAB Calling Syntax

To call methods on Sun Java objects, you can use the Java syntax:

object.method(argt,...,argn)

In the following example, myDate is a java.util.Date object, and getHours
and setHours are methods of that object.

myDate = java.util.Date;
myDate.setHours(3)
myDate.getHours

The MATLAB software displays:

ans =
3

Alternatively, you can call Java object (nonstatic) methods with the MATLAB
syntax:

method(object, argl,...,argn)

7-25

7 Using Sun™ Java™ Classes in MATLAB® Software

7-26

Using MATLAB syntax:

getHours (myDate)

MATLAB displays:

ans =
3

All of the programming examples in this chapter contain invocations of Java
object methods. For example, the code for “Example — Reading a URL” on
page 7-72 contains a call, using MATLAB syntax, to the openStream method
on a java.net.URL object, url.

is = openStream(url)

In another example, the code for “Example — Creating and Using a Phone
Book” on page 7-77 contains a call, using Java syntax, to the 1load method on
a java.utils.Properties object, pb_htable.

pb_htable.load(FIS);

Using the javaMethod Function on Nonstatic Methods

Under certain circumstances, you may need to use the javaMethod function to
call a Java method. The following syntax invokes the method, method_name,

on Java object J with the argument list that matches x1, ... ,xn. This returns
the value X.
X = javaMethod('method_name',J,x1,...,xn);

For example, to call the startsWith method on a java.lang.String object
passing one argument, use:

gAddress = java.lang.String('Four score and seven years ago');
str = java.lang.String('Four score');
javaMethod('startsWith', gAddress, str)
ans =
1

Using the javaMethod function enables you to:

Invoking Methods on Java™ Objects

® Use methods that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

® Specify the method you want to invoke at run-time, for example, as input
from an application user.

The only way to invoke a method whose name is longer than namelengthmax
characters is to use javaMethod. The Java and MATLAB calling syntax does
not accept method names of this length.

With javaMethod, you can also specify the method to be invoked at run time.
In this situation, your code calls javaMethod with a string variable in place
of the method _name argument. When you use javaMethod to invoke a static

method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

Invoking Static Methods on Java Classes
To invoke a static method on a Java class, use the Java syntax:

class.method(argt,...,argn)

For example, to call the isNaN static method on the java.lang.Double class,
type:

java.lang.Double.isNaN(2.2)

Alternatively, you can apply static method names to instances of a class.
In this example, the isNaN static method is referenced in relation to the
dblObject instance of the java.lang.Double class.

dblObject = java.lang.Double(2.2);
dblObject.isNaN
ans =

0

7-27

7 Using Sun™ Java™ Classes in MATLAB® Software

7-28

Using the javaMethod Function on Static Methods
You can use the javaMethod function to call static methods.

The following syntax invokes the static method, method_name, in class,

class_name, with the argument list that matches x1, ... ,xn. This returns
the value X.
X = javaMethod('method_name', 'class_name',x1,...,Xxn);

For example, to call the static isNaN method of the java.lang.Double class
on a double value of 2.2, type:

javaMethod('isNaN', 'java.lang.Double',2.2);
Using the javaMethod function to call static methods enables you to:

® Use methods that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

® Specify method and class names at run-time, for example, as input from
an application user.

Obtaining Information About Methods

MATLAB software offers several functions to help obtain information related
to the Java methods you are working with. You can request a list of all of the
methods that are implemented by any class. The list might be accompanied
by other method information such as argument types and exceptions. You
can also request a listing of every Java class that you loaded into MATLAB
that implements a specified method.

Methodsview: Displaying a Listing of Java Methods

If you want to know what methods are implemented by a particular Java
(or MATLAB) class, use the methodsview function. Specify the class name
(along with its package name, for Java classes) in the command line. If you
have imported the package that defines this class, then the class name alone
suffices.

The following command lists information on all methods in the
java.awt.MenuItem class. Type:

Invoking Methods on Java™ Objects

methodsview java.awt.MenuItem

A new window appears, listing one row of information for each method in

the class.
Ciualifiers Return Type klame Arguments
Menultarn [§] =
Menultem {java.lang. String
Menultern (java.lang.String java.awt.MenuShortcut)
synchronized woid addActionListener (java.awt eventActionListenery
void addlotify [
viid deleteShorcut [§]
synchronized woid disahle [§]
void dispatchEvent (java.awt ANWTEvent)
synchronized woid enahle]
void enable (boolean)
haoaolean equals {java.lang.Object)
java.lano.String getActionCommand [§]
javalang.Class getClass]
java.awt Fant getFant]
java.lang. String getlabel [} [—
java lang.String getMame [§]
java.awt.MenuContainer getParent [§]
java.awtpeerMenuCompaonentPear getFeer]
java.awtMenuShortcut getShortcut [
int hashCode [}
haoaolean isEnahled [§]
void notify]
void notifidll] -
4] | _>|_|

Each row in the window displays up to six fields of information describing the
method. The following table lists the fields displayed in the methodsview
window along with a description and examples of each field type.

Fields Displayed in the Methodsview Window

Field Name

Description

Examples

Qualifiers

Method type qualifiers

abstract, synchronized

Return Type

Type returned by the
method

void, java.lang.String

7-29

7 Using Sun™ Java™ Classes in MATLAB® Software

7-30

Fields Displayed in the Methodsview Window (Continued)

Field Name Description Examples
Name Method name addActionListener,
dispatchEvent
Arguments Types of arguments boolean,
passed to method java.lang.Object
Other Other relevant throws
information java.io.IOException
Inherited From Parent of the specified | java.awt.MenuComponent
class

Using the Methods Function on Java Classes

The methods function returns information on methods of MATLAB and Java
classes. You can use any of the following forms of this command.

methods class name

methods class name -full

n = methods('class name')

n = methods('class name','-full')

Use methods without the '-full' qualifier to return the names of all the
methods (including inherited methods) of the class. Names of overloaded
methods are listed only once.

With the '-full' qualifier, methods returns a listing of the method names
(including inherited methods) along with attributes, argument lists, and
inheritance information on each. Each overloaded method is listed separately.

For example, display a full description of all methods of the
java.awt.Dimension object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension()
Dimension(java.awt.Dimension)

Invoking Methods on Java™ Objects

Dimension(int,int)
java.lang.Class getClass() % Inherited from java.lang.Object
int hashCode() % Inherited from java.lang.Object
boolean equals(java.lang.Object)
java.lang.String toString()
void notify() % Inherited from java.lang.Object
void notifyAll() % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait() throws java.lang.InterruptedException
% Inherited from java.lang.Object
java.awt.Dimension getSize()
void setSize(java.awt.Dimension)
void setSize(int,int)

Determining What Classes Define a Method

You can use the which function to display the fully qualified name (package
and class name) of a method implemented by a loaded Java class. With the
-all qualifier, the which function finds all classes with a method of the
name specified.

Suppose, for example, that you want to find the package and class name for
the concat method, with the String class currently loaded. Use the command:

which concat
java.lang.String.concat % String method

If the java.lang.String class has not been loaded, the same which command
would give the output:

which concat
concat not found.

If you use which -all for the method equals, with the String and
java.awt.Frame classes loaded, you see the following display.

7-31

7 Using Sun™ Java™ Classes in MATLAB® Software

7-32

which -all equals

java.lang.String.equals % String method
java.awt.Frame.equals % Frame method
com.mathworks.ide.desktop.MLDesktop.equals % MLDesktop method

The which function operates differently on Java classes than it does on
MATLAB classes. MATLAB classes are always displayed by which, whether
or not they are loaded. This is not true for Java classes. You can find out which
Java classes are currently loaded by using the command [m,x, j]=inmem,
described in “Determining Which Classes Are Loaded” on page 7-12.

For a description of how Java classes are loaded, see “Making Java Classes
Available in MATLAB Workspace” on page 7-10.

Java Methods That Affect MATLAB Commands

MATLAB commands that operate on Java objects and arrays make use of the
methods that are implemented within, or inherited by, these objects’ classes.
There are some MATLAB commands that you can alter somewhat in behavior
by changing the Java methods that they rely on.

Changing the Effect of disp and display
You can use the disp function to display the value of a variable or an
expression in MATLAB. Terminating a command line without a semicolon

also calls the disp function. You can also use disp to display a Java object
in MATLAB.

When disp operates on a Java object, MATLAB formats the output using the
toString method of the class to which the object belongs. If the class does
not implement this method, then an inherited toString method is used. If
no intermediate ancestor classes define this method, it uses the toString
method defined by the java.lang.0Object class. You can override inherited
toString methods in classes that you create by implementing such a method
within your class definition. In this way, you can change the way MATLAB
displays information regarding the objects of the class.

Invoking Methods on Java™ Objects

Changing the Effect of isequal

The MATLAB isequal function compares two or more arrays for equality in
type, size, and contents. This function can also be used to test Java objects
for equality.

When you compare two Java objects using isequal, MATLAB performs the
comparison using the Java method, equals. MATLAB first determines the
class of the objects specified in the command, and then uses the equals
method implemented by that class. If it is not implemented in this class, then
an inherited equals method is used. This is the equals method defined by
the java.lang.Object class if no intermediate ancestor classes define this
method.

You can override inherited equals methods in classes that you create by
implementing such a method within your class definition. In this way, you can
change the way MATLAB performs comparison of the members of this class.

Changing the Effect of double and char

You can also define your own Java methods toDouble and toChar to change
the output of the MATLAB double and char functions. For more information,
see “Converting to the MATLAB double Type” on page 7-66 and “Converting
to the MATLAB char Type” on page 7-67.

How MATLAB Software Handles Undefined Methods

If your MATLAB command invokes a nonexistent method on a Java object,
MATLAB looks for a function with the same name. If MATLAB finds a
function of that name, it attempts to invoke it. If MATLAB does not find a
function with that name, it displays a message stating that it cannot find a
method by that name for the class.

For example, MATLAB has a function named size, and the Java API
java.awt.Frame class also has a size method. If you call size on a Frame
object, the size method defined by java.awt.Frame is executed. However,
if you call size on an object of java.lang.String, MATLAB does not find a
size method for this class. It executes the MATLAB size function instead.

7-33

7 Using Sun™ Java™ Classes in MATLAB® Software

7-34

string = java.lang.String('hello');
size(string)
ans =

1 1

Note When you define a Java class for use in MATLAB, avoid giving any of
its methods the same name as a MATLAB function.

How MATLAB Software Handles Java Exceptions

If invoking a Java method or constructor throws an exception, MATLAB
catches the exception and transforms it into a MATLAB error message.
MATLAB puts the text of the Java error message into its own error message.
Receiving an error from a Java method or constructor has the same
appearance as receiving an error from a MATLAB function.

Method Execution in MATLAB Software

When calling a main method from MATLAB, the method returns as soon as it
executes its last statement, even if the method creates a thread that is still
executing. In other environments, the main method does not return until the
thread completes execution.

You, therefore, need to be cautious when calling main methods from MATLAB,
particularly main methods that launch GUIs. main methods are usually
written assuming they are the entry point to application code. When called
from MATLAB this is not the case, and the fact that other Java GUI code
might be already running can lead to problems.

Working with Java™ Arrays

Working with Java Arrays

In this section...

“Introduction” on page 7-35

“How MATLAB Software Represents the Java Array” on page 7-35
“Creating an Array of Objects in MATLAB Software” on page 7-40
“Accessing Elements of a Java Array” on page 7-42

“Assigning to a Java Array” on page 7-46

“Concatenating Java Arrays” on page 7-49

“Creating a New Array Reference” on page 7-50

“Creating a Copy of a Java Array” on page 7-51

Introduction

You can pass singular Sun Java objects to and from methods or you might
pass them in an array, providing the method expects them in that form. This
array must either be a Java array (returned from another method call or
created within the MATLAB software) or, under certain circumstances, a
MATLAB cell array. This section describes how to create and manipulate
Java arrays in MATLAB. Later sections will describe how to use MATLAB
cell arrays in calls to Java methods.

Note The term dimension here refers more to the number of subscripts
required to address the elements of an array than to its length, width, and
height characteristics. For example, a 5-by-1 array is referred to as being
one-dimensional, as its individual elements can be indexed into using only
one array subscript.

How MATLAB Software Represents the Java Array

The term Java array refers to any array of Java objects returned from a call
to a Java class constructor or method. You may also construct a Java array
within MATLAB using the javaArray function. The structure of a Java array
is significantly different from that of a MATLAB matrix or array. MATLAB

7-35

7 Using Sun™ Java™ Classes in MATLAB® Software

7-36

hides these differences whenever possible, allowing you to operate on the
arrays using the usual MATLAB command syntax. Just the same, it may be
helpful to keep the following differences in mind as you work with Java arrays.

Representing More Than One Dimension

An array in the Java language is strictly a one-dimensional structure because
it is measured only in length. If you want to work with a two-dimensional
array, you can create an equivalent structure using an array of arrays. To
add further dimensions, you add more levels to the array, making it an array
of arrays of arrays, and so on. You might want to use such multilevel arrays
when working in MATLAB as it is a matrix and array-based programming
language.

MATLAB makes it easy for you to work with multilevel Java arrays by
treating them like the matrices and multidimensional arrays that are a part
of the language itself. You access elements of an array of arrays using the
same MATLAB syntax that you use if you are handling a matrix. If you add
more levels to the array, MATLAB can access and operate on the structure as
if it is a multidimensional MATLAB array.

Working with Java™ Arrays

The left side of the following figure shows Java arrays of one, two, and three
dimensions. To the right of each is the way the same array is represented
to you in MATLAB. Note that single-dimension arrays are represented as

a column vector.

Array Access from Java Array Access from MATLAB
—JArray[0] — jArray(1)
— jArray[1] — jArray(2)
— JjArray[2] — jArray(3)
Simple Array One-dimensional Array
jArray[U][B]—I jArray[1,4j—|

Array of Arrays Two-Dimensional Array

JArray[0][4][2] jArrayU,E,S)—I

Y YU
A

1] i

T

Array of Arrays of Arrays Three-Dimensional Array

Array Indexing

Java array indexing is different than MATLAB array indexing. Java array
indices are zero-based, MATLAB array indices are one-based. In Java
programming, you access the elements of array y of length N using y[0]

7-37

7 Using Sun™ Java™ Classes in MATLAB® Software

7-38

through y[N-1]. When working with this array in MATLAB, you access these
same elements using the MATLAB software indexing style of y(1) through

y (N). Thus, if you have a Java array of 10 elements, the seventh element is
obtained using y(7), and not y[6] as you use when writing a Java language
program.

The Shape of the Java Array

A Java array can be different from a MATLAB array in its overall shape. A
two-dimensional MATLAB array maintains a rectangular shape, as each row
is of equal length and each column of equal height. The Java counterpart of
this, an array of arrays, does not necessarily hold to this rectangular form.
Each individual lower level array may have a different length.

Such an array structure is pictured below. This is an array of three underlying
arrays of different lengths. The term ragged is commonly used to describe
this arrangement of array elements as the array ends do not match up evenly.
When a Java method returns an array with this type of structure, it is stored
in a cell array by MATLAB.

j.&.r‘r‘ay[ﬂli :: :: :: H | length = &
jarray1y G| langth = 2
jAr‘r‘a',r[Z] length = 3

Interpreting the Size of a Java Array

When the MATLAB size function is applied to a simple Java array, the
number of rows returned is the length of the Java array and the number of
columns is always 1.

Determining the size of a Java array of arrays is not so simple. The potentially
ragged shape of an array returned from a Java method makes it impossible to
size the array in the same way as for a rectangular matrix. In a ragged Java
array, there is no one value that represents the size of the lower level arrays.

Working with Java™ Arrays

When the size function is applied to a Java array of arrays, the resulting
value describes the top level of the specified array. For the Java array:

1

mm”:m_[T I q
|

size(A) returns the dimensions of the highest array level of A. The highest
level of the array has a size of 3-by-1.

sizelA)=3xl

size(A)
ans =
3 1

To find the size of a lower level array, say the five-element array in row 3,
refer to the row explicitly.

size(A(3))
ans =
5 1

You can specify a dimension in the size command using the following syntax.
However, you will probably find this useful only for sizing the first dimension,
dim=1, as this will be the only non-unary dimension.

m = size(X,dim)

size(A, 1)
ans =
3

Interpreting the Number of Dimensions of a Java Arrays

For Java arrays, whether they are simple one-level arrays or multilevel, the

MATLAB ndims function always returns a value of 2 to indicate the number

of dimensions in the array. This is a measure of the number of dimensions in
the top-level array, which always equals 2.

7-39

7 Using Sun™ Java™ Classes in MATLAB® Software

7-40

Creating an Array of Objects in MATLAB Software

To call a Java method that has one or more arguments defined as an array
of Java objects, you must, under most circumstances, pass your objects in a
Java array. You can construct an array of objects in a call to a Java method or
constructor. Or you can create the array within MATLAB.

The MATLAB javaArray function lets you create a Java array structure that
can be handled in MATLAB as a single multidimensional array. You specify
the number and size of the array dimensions along with the class of objects
you intend to store in it. Using the one-dimensional Java array as its primary
building block, MATLAB then builds an array structure that satisfies the
dimensions requested in the javaArray command.

Using the javaArray Function

To create a Java object array, use the MATLAB javaArray function, which
has the following syntax:

A = javaArray('element_class', m, n, p, ...)

The first argument is the 'element_class' string, which names the class of
the elements in the array. You must specify the fully qualified name (package
and class name). The remaining arguments (m, n, p, ...) are the number
of elements in each dimension of the array.

An array that you create with javaArray is equivalent to the array that you
create with the Java code.

A = new element_class[m][n][p]...;

The following command builds a Java array of four lower level arrays,

each capable of holding five objects of the java.lang.Double class. (You
are more likely to use primitive types of double than instances of the
java.lang.Double class, but in this context, it affords us a simple example.)

dblArray = javaArray('java.lang.Double', 4, 5);

The javaArray function does not deposit any values into the array elements
that it creates. You must do this separately. The following MATLAB code
stores objects of the java.lang.Double type in the Java array dblArray
that was just created.

Working with Java™ Arrays

form = 1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10) + n);
end

end

dblArray
dblArray =
java.lang.Double[][]:
[11] [12] [13] [14] [15]

[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Another Way to Create a Java Array

You can also create an array of Java objects using syntax that is more typical
to MATLAB. For example, the following syntax creates a 4-by-5 MATLAB
array of type double and assigns zero to each element of the array.

matlabArray(4,5) = 0;

You use similar syntax to create a Java array in MATLAB, except that

you must specify the Java class name. The value being assigned, 0 in this
example, is stored in the final element of the array, javaArray(4,5). All other
elements of the array receive the empty matrix.

javaArray(4,5) = java.lang.Double(0)

javaArray =

java.lang.Double[][]:
[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [] [0]

Note You cannot change the dimensions of an existing Java array as you can
with a MATLAB array. The same restriction exists when working with Java
arrays in the Java language. See the example below.

7-41

7 Using Sun™ Java™ Classes in MATLAB® Software

7-42

This example first creates a scalar MATLAB array, and then successfully
modifies it to be two-dimensional.

matlabArray = 0;
matlabArray(4,5) = 0
matlabArray =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

When you try this with a Java array, you get an error message. Similarly, you
cannot create an array of Java arrays from a Java array, and so forth.

javaArray = java.lang.Double(0);
javaArray(4,5) = java.lang.Double(0);
??? Index exceeds Java array dimensions.

Accessing Elements of a Java Array

You can access elements of a Java object array by using the MATLAB array
indexing syntax, A(row,col). For example, to access the element of array
dblArray located at row 3, column 4, use:

row3_col4
row3_col4
34.0

dblArray(3,4)

In a Java language program, this is dblArray[2][3].

You can also use MATLAB array indexing syntax to access an element in
an object’s data field. Suppose that myMenuObj is an instance of a window
menu class. This user-supplied class has a data field, menuItemArray, which
is a Java array of java.awt.menuItem. To get element 3 of this array, use
the following command.

currentItem = myMenuObj.menultemArray(3)

Working with Java™ Arrays

Using Single Subscript Indexing to Access Arrays

Elements of a MATLAB matrix are most commonly referenced using both row
and column subscripts. For example, you use x(3,4) to reference the array
element at the intersection of row 3 and column 4. Sometimes it is more
advantageous to use just a single subscript. MATLAB provides this capability
(see the section on “Linear Indexing” in MATLAB Mathematics).

Indexing into a MATLAB matrix using a single subscript references one
element of the matrix. Using the MATLAB matrix shown here, matlabArray
(8) returns a single element of the matrix.

matlabArray [11 12 13 14 15; 21 22 23 24 25;

31 32 33 34 35; 41 42 43 44 45]

matlabArray
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

matlabArray(3)
ans =
31

Indexing this way into a Java array of arrays references an entire subarray of
the overall structure. Using the dblArray Java array, that looks the same

as matlabArray shown above, dblArray(3) returns the 5-by-1 array that
makes up the entire third row.

row3
row3d =
java.lang.Double[]:

[31]

[32]

[33]

[34]

[35]

dblArray(3)

This is a useful feature of MATLAB because it allows you to specify an entire
array from a larger array structure, and then manipulate it as an object.

7-43

7 Using Sun™ Java™ Classes in MATLAB® Software

7-44

Using the Colon Operator

Use of the MATLAB colon operator (:) is supported in subscripting Java
array references. This operator works just the same as when referencing the
contents of a MATLAB array. Using the Java array of java.lang.Double
objects shown here, the statement dblArray(2,2:4) refers to a portion of the
lower level array, dblArray(2). A new array, row2Array, is created from
the elements in columns 2 through 4.

dblArray
dblArray =
java.lang.Double[][]:
[11] [12] [13] [14] [15]

[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

row2Array = dblArray(2,2:4)
row2Array =
java.lang.Double[]:

[22]

[23]

[24]

You also can use the colon operator in single-subscript indexing, as covered in
“Using Single Subscript Indexing to Access Arrays” on page 7-43. By making
your subscript a colon rather than a number, you can convert an array of
arrays into one linear array. The following example converts the 4-by-5 array
dblArray into a 20-by-1 linear array.

Working with Java™ Arrays

linearArray = dblArray(:)
linearArray =
java.lang.Double[]:

[11]

[12]

[13]

[14]

[15]

[21]

[22]

This works the same way on an N-dimensional Java array structure. Using
the colon operator as a single subscripted index into the array produces a
linear array composed of all of the elements of the original array.

Note Java and MATLAB arrays are stored differently in memory. This is
reflected in the order they are given in a linear array. Java array elements
are stored in an order that matches the rows of the matrix, (11, 12, 13, ... in
the array shown above). MATLAB array elements are stored in an order that
matches the columns, (11, 21, 31, ...).

Using END in a Subscript

You can use the end keyword in the first subscript of an access statement.
The first subscript references the top-level array in a multilevel Java array
structure.

Note Using end on lower level arrays is not valid due to the potentially
ragged nature of these arrays (see “The Shape of the Java Array” on page
7-38). In this case, there is no consistent end value to be derived.

7-45

7 Using Sun™ Java™ Classes in MATLAB® Software

7-46

The following example displays data from the third to the last row of Java
array dblArray.

last2rows = dblArray(3:end, :)

last2rows =

java.lang.Double[][]:
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Assigning to a Java Array

You assign values to objects in a Java array in essentially the same way
as you do in a MATLAB array. Although Java and MATLAB arrays are
structured quite differently, you use the same command syntax to specify
which elements you want to assign to. See “Introduction” on page 7-35 for
more information on Java and MATLAB array differences.

The following example deposits the value 300 in the dblArray element at row
3, column 2. In a Java language program, this is dblArray[2][1].

dblArray(3,2) = java.lang.Double(300)

dblArray =

java.lang.Double[][]:
[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [300] [33] [34] [35]
[41] [42] [43] [44] [45]

You use the same syntax to assign to an element in an object’s data field.
Continuing with the myMenuObj example shown in “Accessing Elements
of a Java Array” on page 7-42, you assign to the third menu item in
menultemArray as follows.

myMenuObj.menuItemArray(3) = java.lang.String('Save As...');

Using Single Subscript Indexing for Array Assignment

You can use a single-array subscript to index into a Java array structure that
has more than one dimension. Refer to “Using Single Subscript Indexing to
Access Arrays” on page 7-43 for a description of this feature as used with
Java arrays.

Working with Java™ Arrays

You can use single-subscript indexing to assign values to an array as well.
The example below assigns a one-dimensional Java array, onedimArray, to
a row of a two-dimensional Java array, dblArray. Start out by creating the
one-dimensional array.

onedimArray = javaArray('java.lang.Double', 5);
for k = 1:5
onedimArray(k) = java.lang.Double (100 * k);
end

Since dblArray(3) refers to the 5-by-1 array displayed in the third row
of dblArray, you can assign the entire, similarly dimensioned, 5-by-1
onedimArray to it.

dblArray(3) = onedimArray

dblArray =

java.lang.Double[][]:
[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[100] [200] [300] [400] [500]
[41] [42] [43] [44] [45]

Assigning to a Linear Array

You can assign a value to every element of a multidimensional Java array by
treating the array structure as if it were a single linear array. This entails
replacing the single, numerical subscript with the MATLAB colon operator. If
you start with the dblArray array, you can initialize the contents of every
object in the two-dimensional array with the following statement.

dblArray(:) = java.lang.Double(0)

dblArray =

java.lang.Double[][]:
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]

7-47

7 Using Sun™ Java™ Classes in MATLAB® Software

7-48

You can use the MATLAB colon operator as you would when working with
MATLAB arrays. The statements below assign given values to each of the
four rows in the Java array, dblArray. Remember that each row actually
represents a separate Java array in itself.

dblArray(1,:) = java.lang.Double(125);
dblArray(2,:) = java.lang.Double(250);
dblArray(3,:) = java.lang.Double(375);
dblArray(4,:) = java.lang.Double(500)
dblArray =
java.lang.Double[][]:
[125] [125] [125] [125] [125]
[250] [250] [250] [250] [250]
[375] [375] [375] [375] [375]
[500] [500] [500] [500] [500]

Assigning the Empty Matrix

When working with MATLAB arrays, you can assign the empty matrix, (i.e.,
the 0-by-0 array denoted by []) to an element of the array. For Java arrays,
you can also assign [] to array elements. This stores the NULL value, rather
than a 0-by-0 array, in the Java array element.

Subscripted Deletion

When you assign the empty matrix value to an entire row or column of a
MATLAB array, you find that MATLAB actually removes the affected row or
column from the array. In the example below, the empty matrix is assigned
to all elements of the fourth column in the MATLAB matrix, matlabArray.
Thus, the fourth column is completely eliminated from the matrix. This
changes its dimensions from 4-by-5 to 4-by-4.

Working with Java™ Arrays

matlabArra

matlabArra
11
21
31
41

y

y
12

22
32
42

[11 12 13 14 15; 21 22 23 24 25;
31 32 33 34 35; 41 42 43 44 45]

13
23
33
43

matlabArray(:,4) =

matlabArray =
11 12
21 22
31 32
41 42

13
23
33
43

14
24
34
44

15
25
35
45

15
25
35
45

You can assign the empty matrix to a Java array, but the effect is different.
The next example shows that, when the same operation is performed on a
Java array, the structure is not collapsed; it maintains its 4-by-5 dimensions.

dblArray(:,4) = []

dblArray =

java.lang.Double[][]:

[125]
[250]
[375]
[500]

[125]
[250]
[375]
[500]

[125]
[250]
[375]
[500]

[
[
[
[

[125]
[250]
[375]
[500]

The dblArray data structure is actually an array of five-element arrays of
java.lang.Double objects. The empty array assignment placed the NULL
value in the fourth element of each of the lower level arrays.

Concatenating Java Arrays

You can concatenate arrays of Java objects in the same way as arrays of other
types. Java objects, however, can only be catenated along the first or second
axis. To understand how scalar Java objects are concatenated in MATLAB

software, see “Concatenating Java Objects” on page 7-19.

Use either the cat function or the square bracket ([1) operators. This example

horizontally concatenates two Java arrays: d1 and d2.

7-49

7 Using Sun™ Java™ Classes in MATLAB® Software

7-50

% Construct a 2-by-3 array of java.lang.Double.
d1 = javaArray('java.lang.Double',2,3);

for m = 1:3 for n = 1:3

d1i(m,n) = java.lang.Double(n*2 + m-1);
end; end;

di1

a1 =

java.lang.Double[][]:
[2] [4] [6]
[3] [5] [7]
[4] [6] [8]

% Construct a 2-by-2 array of java.lang.Double.
d2 = javaArray('java.lang.Double',2,2);

for m = 1:3 for n = 1:2

d2(m,n) = java.lang.Double((n+3)*2 + m-1);
end; end;

d2

d2 =

java.lang.Double[][]:
[8] [10]
[9] [11]
[10] [12]

% Concatenate the two along the second dimension.
d3 = cat(2,d1,d2)
a3 =
java.lang.Double[][]:
[2] [4] [6] [8] [10]
[3] [5] [7] [9] [11]
[4] [6] [8] [10] [12]

Creating a New Array Reference

Because Java arrays in MATLAB software are references, assigning an array
variable to another variable results in a second reference to the array.

Consider the following example where two separate array variables reference
a common array. The original array, origArray, is created and initialized.

Working with Java™ Arrays

The statement newArrayRef = origArray creates a copy of this array
variable. Changes made to the array referred to by newArrayRef also show up
in the original array.

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3
for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);
end
end
origArray
origArray =

java.lang.Double[][]:
[11] [12] [13] [14]

[21] [22] [23] [24]
[31] [32] [33] [34]
% ----- Make a copy of the array reference -----

newArrayRef = origArray;
newArrayRef (3,:) = java.lang.Double(0);

origArray

origArray =

java.lang.Double[][]:
[11] [12] [13] [14]
[21] [22] [23] [24]
[O] [0] [0] [0]

Creating a Copy of a Java Array

You can create an entirely new array from an existing Java array by indexing
into the array to describe a block of elements, (or subarray), and assigning
this subarray to a variable. The assignment copies the values in the original
array to the corresponding cells of the new array.

As with the example in section “Creating a New Array Reference” on page
7-50, an original array is created and initialized. But, this time, a copy 1s
made of the array contents rather than copying the array reference. Changes
made using the reference to the new array do not affect the original.

7-51

7 Using Sun™ Java™ Classes in MATLAB® Software

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3
for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);
end
end
origArray
origArray =

java.lang.Double[][]:
[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

% ----- Make a copy of the array contents -----
newArray = origArray(:,:);
newArray(3,:) = java.lang.Double(0);

origArray

origArray =

java.lang.Double[][]:
[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

7-52

Passing Data to a Java™ Method

Passing Data to a Java Method

In this section...

“Introduction” on page 7-53

“Conversion of MATLAB Argument Data” on page 7-53
“Passing Built-In Types” on page 7-55

“Passing String Arguments” on page 7-56

“Passing Java Objects” on page 7-57

“Other Data Conversion Topics” on page 7-60

“Passing Data to Overloaded Methods” on page 7-61

Introduction

When you make a call in the MATLAB software to Sun Java code, any
MATLAB types you pass in the call are converted to types native to the
Java language. MATLAB performs this conversion on each argument that
1s passed, except for those arguments that are already Java objects. This
section describes the conversion that is performed on specific MATLAB types
and, at the end, also takes a look at how argument types affect calls made to
overloaded methods.

If data is to be returned by the method being called, MATLAB receives this
data and converts it to the appropriate MATLAB format wherever necessary.
This process is covered in “Handling Data Returned from a Java Method”

on page 7-64.

Conversion of MATLAB Argument Data

MATLAB data, passed as arguments to Java methods, are converted by
MATLAB into types that best represent the data to the Java language. The
table below shows all of the MATLAB base types for passed arguments and
the Java base types defined for input arguments. Each row shows a MATLAB
type followed by the possible Java argument matches, from left to right in
order of closeness of the match. The MATLAB types (except cell arrays) can
all be scalar (1-by-1) arrays or matrices. All of the Java types can be scalar
values or arrays.

7-53

7 Using Sun™ Java™ Classes in MATLAB® Software

Conversion of MATLAB Types to Java Types

Least

Close
MATLAB Closest Type
Argument Type (7) Java Input Argument (Scalar or Array) (1)
logical boolean byte short int long float double
double double float long int short byte boolean
single float double N/A N/A N/A N/A N/A
char String char N/A N/A N/A N/A N/A
uint8 byte short int long float double | N/A
uinti1eé short int long float double | N/A N/A
uint32 int long float double | N/A N/A N/A
int8 byte short int long float double | N/A
int16 short int long float double | N/A N/A
int32 int long float double | N/A N/A N/A
cell array of array of N/A N/A N/A N/A N/A N/A
strings String
Java object Object N/A N/A N/A N/A N/A N/A
cell array of array of N/A N/A N/A N/A N/A N/A
object Object
MATLAB N/A N/A N/A N/A N/A N/A N/A
object

Type conversion of arguments passed to Java code are discussed in the
following three categories. MATLAB handles each category differently.

¢ “Passing Built-In Types” on page 7-55
e “Passing String Arguments” on page 7-56
® “Passing Java Objects” on page 7-57

7-54

Passing Data to a Java™ Method

Passing Built-In Types

The Java language has eight types that are intrinsic to the language and are
not represented as Java objects. These are often referred to as built-in, or
elemental, types and they include boolean, byte, short, long, int, double,
float, and char. MATLAB software converts its own types to these Java
built-in types according to the table, Conversion of MATLAB® Types to Java™
Types on page 7-54. Built-in types are in the first 10 rows of the table.

When a Java method you are calling expects one of these types, you can pass
it the type of MATLAB argument shown in the left-most column of the table.
If the method takes an array of one of these types, you can pass a MATLAB
array of the type. MATLAB converts the type of the argument to the type
assigned in the method declaration.

The MATLAB code shown below creates a top-level window frame and sets
its dimensions. The call to setBounds passes four MATLAB scalars of the
double type to the inherited Java Frame method, setBounds, that takes four
arguments of the int type. MATLAB converts each 64-bit double type to a
32-bit integer prior to making the call. Shown here is the setBounds method
declaration followed by the MATLAB code that calls the method.

public void setBounds(int x, int y, int width, int height)

frame=java.awt.Frame;
frame.setBounds(200,200,800,400);
frame.setVisible(1);

Passing Built-In Types in an Array

To call a Java method with an argument defined as an array of a built-in type,
you can create and pass a MATLAB matrix with a compatible base type. The
following code defines a polygon by sending four x and y coordinates to the
Polygon constructor. Two 1-by-4 MATLAB arrays of double are passed to
java.awt.Polygon, which expects integer arrays in the first two arguments.
Shown here is the Java method declaration followed by MATLAB code that
calls the method, and then verifies the set coordinates.

7-55

7 Using Sun™ Java™ Classes in MATLAB® Software

public Polygon(int xpoints[], int ypoints[], int npoints)

poly = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);

[poly.xpoints poly.ypoints] % Verify the coordinates
ans =

14 55

42 12

98 -2

124 62

MATLAB Arrays Are Passed by Value

Since MATLAB arrays are passed by value, any changes that a Java method
makes to them are not visible to your MATLAB code. If you need to access
changes that a Java method makes to an array, then, rather than passing

a MATLAB array, you should create and pass a Java array, which is a
reference. For a description of using Java arrays in MATLAB, see “Working
with Java Arrays” on page 7-35.

Note Generally, it is preferable to have methods return data that has been
modified using the return argument mechanism as opposed to passing a
reference to that data in an argument list.

Passing String Arguments

To call a Java method that has an argument defined as an object of class
java.lang.String, you can pass either a String object that was returned
from an earlier Java call or a MATLAB 1-by-n character array. If you
pass the character array, MATLAB converts the array to a Java object of
java.lang.String for you.

For a programming example, see “Example — Reading a URL” on page 7-72.
This shows a MATLAB character array that holds a URL being passed to the
Java URL class constructor. The constructor, shown below, expects a Java
String argument.

public URL(String spec) throws MalformedURLException

7-56

Passing Data to a Java™ Method

In the MATLAB call to this constructor, a character array specifying the
URL is passed. MATLAB converts this array to a Java String object prior to
calling the constructor.

url = java.net.URL(...
"http://archive.ncsa.uiuc.edu/demoweb/")

Passing Strings in an Array

When the method you are calling expects an argument of an array of type
String, you can create such an array by packaging the strings together
in a MATLAB cell array. The strings can be of varying lengths since you
are storing them in different cells of the array. As part of the method call,
MATLAB converts the cell array to a Java array of String objects.

In the following example, the echoPrompts method of a user-written class
accepts a string array argument that MATLAB converted from its original
format as a cell array of strings. The parameter list in the Java method
appears as follows:

public String[] echoPrompts(String s[])

You create the input argument by storing both strings in a MATLAB cell
array. MATLAB converts this structure to a Java array of String.

myaccount.echoPrompts({'Username: ', 'Password: '})
ans =

'Username: '

'"Password: '

Passing Java Objects

When calling a method that has an argument belonging to a particular Java
class, you must pass an object that is an instance of that class. In the example
below, the add method belonging to the java.awt.Menu class requires, as an
argument, an object of the java.awt.MenuItem class. The method declaration
for this is:

public MenulItem add(MenuItem mi)

The example operates on the frame created in the previous example in
“Passing Built-In Types” on page 7-55. The second, third, and fourth lines of

7-57

7 Using Sun™ Java™ Classes in MATLAB® Software

7-58

code shown here add items to a menu to be attached to the existing window
frame. In each of these calls to menu1.add, an object that is an instance of the
java.awt.MenuItem Java class is passed.

menul = java.awt.Menu('File Options');
menul.add(java.awt.MenuItem('New'));
menul.add(java.awt.MenuItem('Open'));
menuil.add(java.awt.MenuItem('Save'))

b

menuBar=java.awt.MenuBar;
menuBar.add(menul);
frame.setMenuBar (menuBar) ;

Handling Objects of Class java.lang.Object

A special case exists when the method being called takes an argument of
the java.lang.Object class. Since this class is the root of the Java class
hierarchy, you can pass objects of any class in the argument. The following
hash table example passes objects belonging to different classes to a common
method, put, which expects an argument of java.lang.0Object. The method
declaration for put is:

public synchronized Object put(Object key, Object value)

The following MATLAB code passes objects of different types (boolean, float,
and string) to the put method.

hTable = java.util.Hashtable;

hTable.put (0, java.lang.Boolean('TRUE'));
hTable.put(1, java.lang.Float(41.287));
hTable.put(2, java.lang.String('test string'));

hTable % Verify hash table contents
hTable =
{1.0=41.287, 2.0=test string, 0.0=true}

When passing arguments to a method that takes java.lang.0Object, it is not
necessary to specify the class name for objects of a built-in type. Line 3, in the
example above, specifies that 41.287 is an instance of class java.lang.Float.
You can omit this and simply say, 41.287, as shown in the following example.

Passing Data to a Java™ Method

Thus, MATLAB creates each object for you, choosing the closest matching
Java object representation for each argument.

The three calls to put from the preceding example can be rewritten as:

hTable.put (0, 1);
hTable.put(1, 41.287);
hTable.put(2, 'test string');

Passing Objects in an Array

The only types of object arrays that you can pass to Java methods are Java
arrays and MATLAB cell arrays. MATLAB automatically converts the cell
array elements to java.lang.0bject class objects. Note that in order for
a cell array to be passed from MATLAB, the corresponding argument in
the Java method signature must specify java.lang.Object or an array of
java.lang.Object.

If the objects are already in a Java array, either an array returned from a
Java constructor or constructed in MATLAB by the javaArray function, then
you simply pass it as the argument to the method being called. No conversion
1s done by MATLAB, because the argument is already a Java array.

The following example shows the mapPoints method of a user-written class
accepting an array of java.awt.Point objects. The declaration for this
method is:

public Object mapPoints(java.awt.Point p[])

The MATLAB code shown below creates a 4-by-1 array containing four
Java Point objects. When the array is passed to the mapPoints method, no
conversion is necessary because the javaArray function created a Java array
of java.awt.Point objects.

pointObj = javaArray('java.awt.Point',4);
pointObj (1) = java.awt.Point(25,143);

pointObj(2) = java.awt.Point(31,147);
pointObj(3) = java.awt.Point(49,151);
pointObj (4) java.awt.Point(52,176)

H

testData.mapPoints(pointObj);

7-59

7 Using Sun™ Java™ Classes in MATLAB® Software

7-60

Handling a Cell Array of Java Objects

You create a cell array of Java objects by using the MATLAB syntax
{a1,a2,...}. You index into a cell array of Java objects in the usual way,
with the syntax a{m,n,...}.

The following example creates a cell array of two Frame objects, frame1 and
frame2, and assigns it to variable frameArray.

framei java.awt.Frame('Frame A');
frame2 = java.awt.Frame('Frame B');

frameArray = {framel, frame2}
frameArray
[1x1 java.awt.Frame] [1x1 java.awt.Frame]

The next statement assigns element {1,2} of the cell array frameArray to
variable f.

f
f =
java.awt.Frame[frame2,0,0,0x0,invalid,hidden,layout =
java.awt.BorderLayout,resizable,title=Frame B]

frameArray {1,2}

Other Data Conversion Topics

There are several remaining items of interest regarding the way MATLAB
software converts its data to a compatible Java type. This includes how
MATLAB matches array dimensions, and how it handles empty matrices
and empty strings.

How Array Dimensions Affect Conversion

The term dimension, as used in this section, refers more to the number of
subscripts required to address the elements of an array than to its length,
width, and height characteristics. For example, a 5-by-1 array is referred to
as having one dimension, because its individual elements can be indexed
into using only one array subscript.

In converting MATLAB to Java arrays, MATLAB handles dimension in a
special manner. For a MATLAB array, dimension can be considered as the
number of nonsingleton dimensions in the array. For example, a 10-by-1

Passing Data to a Java™ Method

array has dimension 1, and a 1-by-1 array has dimension 0. In Java code,
dimension is determined solely by the number of nested arrays. For example,
double[]1[] has dimension 2, and double has dimension O.

If the Java array’s number of dimensions exactly matches the MATLAB
array’s number of dimensions n, the conversion results in a Java array with n
dimensions. If the Java array has fewer than n dimensions, the conversion
drops singleton dimensions, starting with the first one, until the number of
remaining dimensions matches the number of dimensions in the Java array.

Empty Matrices and Nulls

The empty matrix is compatible with any method argument for which NULL
is a legal value in the Java language. The empty string (' ') in MATLAB
translates into an empty (not NULL) String object in Java code.

Passing Data to Overloaded Methods

When you invoke an overloaded method on a Java object, the MATLAB
software determines which method to invoke by comparing the arguments
your call passes to the arguments defined for the methods. Note that in this
discussion, the term method includes constructors. When it determines the
method to call, MATLAB converts the calling arguments to Java method
types according to Java conversion rules, except for conversions involving
objects or cell arrays. See “Passing Objects in an Array” on page 7-59.

How MATLAB Determines the Method to Call
When your MATLAB function calls a Java method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a
method by that name.

2 Determines whether the invocation passes the same number of arguments
of at least one method with that name.

3 Makes sure that each passed argument can be converted to the Java type
defined for the method.

If all of the preceding conditions are satisfied, MATLAB calls the method.

7-61

7 Using Sun™ Java™ Classes in MATLAB® Software

7-62

In a call to an overloaded method, if there is more than one candidate,
MATLAB selects the one with arguments that best fit the calling arguments.
First, MATLAB rejects all methods that have any argument types that are
incompatible with the passed arguments (for example, if the method has a
double argument and the passed argument is a char).

Among the remaining methods, MATLAB selects the one with the highest
fitness value, which is the sum of the fitness values of all its arguments.
The fitness value for each argument is the fitness of the base type minus
the difference between the MATLAB array dimension and the Java array
dimension. (Array dimensionality is explained in “How Array Dimensions
Affect Conversion” on page 7-60.) If two methods have the same fitness, the
first one defined in the Java class is chosen.

Example — Calling an Overloaded Method

Suppose a function constructs a java.io.OutputStreamWriter object, osw,
and then invokes a method on the object.

osw.write('Test data', 0, 9);

MATLAB finds that the class java.io.OutputStreamWriter defines three
write methods.

public void write(int c);
public void write(char[] cbuf, int off, int len);
public void write(String str, int off, int len);

MATLAB rejects the first write method, because it takes only one argument.
Then, MATLAB assesses the fitness of the remaining two write methods.
These differ only in their first argument, as explained below.

In the first of these two write methods, the first argument is defined with
base type, char. The table, Conversion of MATLAB® Types to Java™ Types
on page 7-54, shows that for the type of the calling argument (MATLAB
char), Java type, char, has a value of 6. There is no difference between the
dimension of the calling argument and the Java argument. So the fitness
value for the first argument is 6.

In the other write method, the first argument has Java type String, which
has a fitness value of 7. The dimension of the Java argument is 0, so the

Passing Data to a Java™ Method

difference between it and the calling argument dimension is 1. Therefore, the
fitness value for the first argument is 6.

Because the fitness value of those two write methods is equal, MATLAB calls
the one listed first in the class definition, with char[] first argument.

7-63

7 Using Sun™ Java™ Classes in MATLAB® Software

7-64

Handling Data Returned from a Java Method

In this section...

“Introduction” on page 7-64

“Conversion of Java Return Types” on page 7-64
“Built-In Types” on page 7-65

“Java Objects” on page 7-65

“Converting Objects to MATLAB Types” on page 7-66

Introduction

In many cases, data returned from a Sun Java method is incompatible with
the types operated on in the MATLAB environment. When this is the case,
MATLAB converts the returned value to a type native to the MATLAB
language. This section describes the conversion performed on the various
types that can be returned from a call to a Java method.

Conversion of Java Return Types

The following table lists Java return types and the resulting MATLAB types.
For some Java base return types, MATLAB treats scalar and array returns
differently, as described following the table.

Conversion of Java Types to MATLAB Types

If Scalar Return, If Array Return,
Resulting MATLAB Resulting MATLAB

Java Return Type Type Type

boolean logical logical

byte double int8

short double int16

int double int32

long double double

float double single

Handling Data Returned from a Java™ Method

Conversion of Java Types to MATLAB Types (Continued)

If Scalar Return, If Array Return,
Resulting MATLAB Resulting MATLAB
Java Return Type Type Type
double double double
char char char

Built-In Types

Java built-in types are described in “Passing Built-In Types” on page 7-55.
This type includes boolean, byte, short, long, int, double, float, and char.
When the value returned from a method call is one of these types, MATLAB
software converts it according to the table Conversion of Java™ Types to
MATLAB® Types on page 7-64.

A single numeric or boolean value converts to a 1-by-1 matrix of double,
which is convenient for use in MATLAB. An array of a numeric or boolean
return values converts to an array of the closest base type to minimize the
required storage space. Array conversions are listed in the right-hand column
of the table.

A return value of Java type char converts to a 1-by-1 matrix of char. An array
of Java char converts to a MATLAB array of that type.

Java Objects

When a method call returns Java objects, the MATLAB software leaves them
in their original form. They remain as Java objects so you can continue to use
them to interact with other Java methods.

The only exception to this is when the method returns data of type
java.lang.Object. This class is the root of the Java class hierarchy and is
frequently used as a catchall for objects and arrays of various types. When
the method being called returns a value of the Object class, MATLAB
converts its value according to the table Conversion of Java™ Types to
MATLAB® Types on page 7-64. That is, numeric and boolean objects such
as java.lang.Integer or java.lang.Boolean convert to a 1-by-1 MATLAB

7-65

7 Using Sun™ Java™ Classes in MATLAB® Software

7-66

matrix of double. Object arrays of these types convert to the MATLAB
types listed in the right-hand column of the table. Other object types are
not converted.

Converting Objects to MATLAB Types

With the exception of objects of class Object, MATLAB does not convert Java
objects returned from method calls to a native MATLAB type. If you want to
convert Java object data to a form more readily usable in MATLAB, there are
a few MATLAB functions that enable you to do this. These are described in
the following sections.

® “Converting to the MATLAB double Type” on page 7-66
e “Converting to the MATLAB char Type” on page 7-67

® “Converting to a MATLAB Structure” on page 7-67

e “Converting to a MATLAB Cell Array” on page 7-68

Converting to the MATLAB double Type

Using the double function in MATLAB, you can convert any Java object or
array of objects to the MATLAB double type. The action taken by the double
function depends on the class of the object you specify:

¢ [f the object is an instance of a numeric class (java.lang.Number or one of
the classes that inherit from that class), MATLAB uses a preset conversion
algorithm to convert the object to a MATLAB double.

¢ [f the object is not an instance of a numeric class, MATLAB checks the
class definition to see if it implements a method called toDouble. MATLAB
uses toDouble to perform its conversion of Java objects to the MATLAB
double type. If such a method is implemented for this class, MATLAB
executes it to perform the conversion.

¢ If you are using a class of your own design, you can write your own
toDouble method to perform conversions on objects of that class to a
MATLAB double. This enables you to specify your own means of type
conversion for objects belonging to your own classes.

Handling Data Returned from a Java™ Method

Note If the class of the specified object is not java.lang.Number, does not
inherit from that java.lang.Number, and does not implement a toDouble
method, then an attempt to convert the object using the double function
results in a MATLAB error message.

The syntax for the double command is as follows, where object is a Java
object or Java array of objects:

double(object);

Converting to the MATLAB char Type

With the MATLAB char function, you can convert java.lang.String objects
and arrays to MATLAB types. A single java.lang.String object converts to
a MATLAB character array. An array of java.lang.String objects converts
to a MATLAB cell array, with each cell holding a character array.

If the object specified in the char command is not an instance of the
java.lang.String class, MATLAB checks its class to see if it implements

a method named toChar. If this is the case, MATLAB executes the toChar
method of the class to perform the conversion. If you write your own class
definitions, you can make use of this feature by writing a toChar method that
performs the conversion according to your own needs.

Note If the class of the specified object is not java.lang.String and it does
not implement a toChar method, an attempt to convert the object using the
char function results in a MATLAB error message.

The syntax for the char command is as follows, where object is a Java object
or Java array of objects:

char(object);

Converting to a MATLAB Structure

Java objects are similar to the MATLAB structure in that many of an
object’s characteristics are accessible via field names defined within the

7-67

7 Using Sun™ Java™ Classes in MATLAB® Software

7-68

object. You might want to convert a Java object into a MATLAB structure
to facilitate the handling of its data in MATLAB. Use the MATLAB struct
function to do this.

The syntax for the struct command is as follows, where object is a Java
object or a Java array of objects:

struct(object);

The following example converts a java.awt.Polygon object into a MATLAB
structure. You can access the fields of the object directly using MATLAB
structure operations. The last line indexes into the array, pstruct.xpoints,
to deposit a new value into the third array element.

polygon = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);

pstruct = struct(polygon)
pstruct
npoints: 4
xpoints: [4x1 int32]
ypoints: [4x1 int32]

pstruct.xpoints
ans =

14

42

98

124

pstruct.xpoints(3) = 101;

Converting to a MATLAB Cell Array

Use the cell function to convert a Java array or Java object into a MATLAB
cell array. Elements of the resulting cell array are of the MATLAB type (if
any) closest to the Java array elements or Java object.

The syntax for the cell command is as follows, where object is a Java object
or a Java array of objects.

cell(object);

Handling Data Returned from a Java™ Method

The code in the following example creates a MATLAB cell array in which each
cell holds an array of a different type. The cell command used in the first

line converts each type of object array into a cell array.
import java.lang.* java.awt.*;

% Create a Java array of double
dblArray = javaArray('java.lang.Double', 1, 10);
for m = 1:10
dblArray(1, m) = Double(m * 7);
end

% Create a Java array of points

ptArray = javaArray('java.awt.Point', 3);
ptArray(1) = Point(7.1, 22);

ptArray(2) = Point(5.2, 35);

ptArray(3) = Point(3.1, 49);

% Create a Java array of strings
strArray = javaArray('java.lang.String', 2, 2);

strArray(1,1) = String('one'); strArray(1,2) = String('two');
strArray(2,1) = String('three'); strArray(2,2) = String('four');

% Convert each to cell arrays
cellArray = {cell(dblArray), cell(ptArray), cell(strArray)}
cellArray =

{1x10 cell} {3x1 cell} {2x2 cell}

cellArray{1,1} % Array of type double
ans =

[7] [14] [21] [28] [35] [42] [49] [56] [63] [70]
cellArray{1,2} % Array of type Java.awt.Point
ans =
F

[1x1 java.awt.Point]
[1x1 java.awt.Point]
[1x1 java.awt.Point]

7-69

7 Using Sun™ Java™ Classes in MATLAB® Software

cellArray{1,3} % Array of type char array
ans =

‘one’ "two'

"three'’ 'four'

7-70

Introduction to Programming Examples

Introduction to Programming Examples

¢ “Example — Reading a URL” on page 7-72
¢ “Example — Finding an Internet Protocol Address” on page 7-75

¢ “Example — Creating and Using a Phone Book” on page 7-77
Each example contains the following sections:

® Overview — Describes what the example does and how it uses the Sun
Java interface to accomplish it. Highlighted are the most important Java
objects that are constructed and used in the example code.

® Description — provides a detailed description of all code in the example.
For longer functions, the description is divided into functional sections that
focus on a few statements.

¢ Running the Example — Shows a sample of the output from execution
of the example code.

The example descriptions concentrate on the Java-related functions. For
information on other MATLAB programming constructs, operators, and
functions used in the examples, see the applicable sections in the MATLAB
documentation.

7-71

7 Using Sun™ Java™ Classes in MATLAB® Software

7-72

Example — Reading a URL

In this section...

“Overview” on page 7-72

“Description of URLdemo” on page 7-72

“Running the Example” on page 7-73

Overview

This program, URLdemo, opens a connection to a Web site specified by a URL
(Uniform Resource Locator) for the purpose of reading text from a file at
that site.

URLdemo constructs an object of the Sun Java API class, java.net.URL, which
enables convenient handling of URLs. Then, it calls a method on the URL
object, to open a connection.

To read and display the lines of text at the site, URLdemo uses classes from
the Java I/O package java.io. It creates an InputStreamReader object,
and then uses that object to construct a BufferedReader object. Finally, it
calls a method on the BufferedReader object to read the specified number
of lines from the site.

Description of URLdemo
The major tasks performed by URLdemo are:

1 Construct a URL object.

The example first calls a constructor on java.net.URL and assigns the
resulting object to variable url. The URL constructor takes a single
argument, the name of the URL to be accessed, as a string. The constructor
checks whether the input URL has a valid form.

url = java.net.URL(...
"http://www.mathworks.com/support/tech-notes/1100/1109.html")

2 Open a connection to the URL.

Example — Reading a URL

The second statement of the example calls the method, openStream, on
the URL object url, to establish a connection with the Web site named by
the object. The method returns an InputStream object to variable, is, for
reading bytes from the site.

is = openStream(url);
3 Set up a buffered stream reader.

The next two lines create a buffered stream reader for characters. The
java.io.InputStreamReader constructor is called with the input stream
is, to return to variable isr an object that can read characters. Then,
the java.io.BufferedReader constructor is called with isr, to return

a BufferedReader object to variable br. A buffered reader provides for
efficient reading of characters, arrays, and lines.

isr = java.io.InputStreamReader(is);
br = java.io.BufferedReader(isr);

4 Read and display lines of text.

The final statements read the initial lines of HTML text from the site,
displaying only the first 4 lines that contain meaningful text. Within the
MATLAB for statements, the BufferedReader method readLine reads
each line of text (terminated by a return and/or line feed character) from
the site.

for k = 1:288 % Skip initial HTML formatting lines
s = readLine(br);

end

for k = 1:4 % Read the first 4 lines of text
s = readLine(br);
disp(s)

end

Running the Example

When you run this example, you see output similar to the following. (Note
that the line breaks were changed to fit the output in the documentation).

<p>This technical note provides an introduction to vectorization

7-73

7 Using Sun™ Java™ Classes in MATLAB® Software

7-74

techniques. In order to understand some of the possible techniques,
an introduction to MATLAB referencing is provided. Then several
vectorization examples are discussed.</p>

<p>This technical note examines how to identify situations where
vectorized techniques would yield a quicker or cleaner algorithm.
Vectorization is ofen a smooth process; however, in many
application-specific cases, it can be difficult to construct a
vectorized routine. Understanding the tools and

Example — Finding an Internet Protocol Address

Example — Finding an Internet Protocol Address

In this section...

“Overview” on page 7-75
“Description of resolveip” on page 7-75

“Running the Example” on page 7-76

Overview

The resolveip function returns either the name or address of an IP (internet
protocol) host. If you pass resolveip a host name, it returns the IP address.
If you pass resolveip an IP address, it returns the host name. The function
uses the Sun Java API class java.net.InetAddress, which enables you to
find an IP address for a host name, or the host name for a given IP address,
without making DNS calls.

resolveip calls a static method on the InetAddress class to obtain an
InetAddress object. Then, it calls accessor methods on the InetAddress
object to get the host name and IP address for the input argument. It displays
either the host name or the IP address, depending on the program input
argument.

Description of resolveip
The major tasks performed by resolveip are:

1 Create an InetAddress object.

Instead of constructors, the java.net.InetAddress class has static
methods that return an instance of the class. The try statement calls one
of those methods, getByName, passing the input argument that the user
has passed to resolveip. The input argument can be either a host name
or an IP address. If getByName fails, the catch statement displays an
error message.

function resolveip(input)
try
address = java.net.InetAddress.getByName(input);

7-75

7 Using Sun™ Java™ Classes in MATLAB® Software

7-76

catch
error(sprintf('Unknown host %s.', input));
end

2 Retrieve the host name and IP address.

The example uses calls to the getHostName and getHostAddress accessor
functions on the java.net.InetAddress object, to obtain the host name
and IP address, respectively. These two functions return objects of class
java.lang.String; use the char function to convert them to character
arrays.

hostname = char(address.getHostName);
ipaddress = char(address.getHostAddress);

3 Display the host name or IP address.

The example uses the MATLAB strcmp function to compare the input
argument to the resolved IP address. If it matches, MATLAB displays the
host name for the Internet address. If the input does not match, MATLAB
displays the IP address.

if strcmp(input,ipaddress)

disp(sprintf('Host name of %s is %s', input, hostname));
else

disp(sprintf('IP address of %s is %s', input, ipaddress));
end;

Running the Example
Here is an example of calling the resolveip function with a host name.

resolveip ('www.mathworks.com')
IP address of www.mathworks.com is 144.212.100.10

Here is a call to the function with an IP address.

resolveip ('144.212.100.10")
Host name of 144.212.100.10 is www.mathworks.com

Example — Creating and Using a Phone Book

Example — Creating and Using a Phone Book

In this section...

“Overview” on page 7-77

“Description of Function phonebook” on page 7-78
“Description of Function pb_lookup” on page 7-82
“Description of Function pb_add” on page 7-83
“Description of Function pb_remove” on page 7-84
“Description of Function pb_change” on page 7-85
“Description of Function pb_listall” on page 7-86
“Description of Function pb_display” on page 7-87
“Description of Function pb_keyfilter” on page 7-87
“Running the phonebook Program” on page 7-88

Overview

The example’s main function, phonebook, can be called either with no
arguments, or with one argument, which is the key of an entry that exists
in the phone book. The function first determines the folder to use for the
phone book file.

If no phone book file exists, it creates one by constructing a
java.io.FileOutputStream object, and then closing the output stream. Next,
it creates a data dictionary by constructing an object of the Sun Java API
class, java.util.Properties, which is a subclass of java.util.Hashtable
for storing key/value pairs in a hash table. For the phonebook program, the
key is a name, and the value is one or more telephone numbers.

The phonebook function creates and opens an input stream for reading by
constructing a java.io.FileInputStream object. It calls 1oad on that object
to load the hash table contents, if it exists. If the user passed the key to an
entry to look up, it looks up the entry by calling pb_lookup, which finds and
displays it. Then, the phonebook function returns.

7-77

7 Using Sun™ Java™ Classes in MATLAB® Software

7-78

If phonebook was called without the name argument, it then displays a
textual menu of the available phone book actions:

® Look up an entry

* Add an entry

* Remove an entry

¢ Change the phone number(s) in an entry

List all entries

The menu also has a selection to exit the program. The function uses
MATLAB functions to display the menu and to input the user selection.

The phonebook function iterates accepting user selections and performing the
requested phone book action until the user selects the menu entry to exit. The
phonebook function then opens an output stream for the file by constructing a
java.io.FileOutputStream object. It calls save on the object to write the
current data dictionary to the phone book file. It finally closes the output
stream and returns.

Description of Function phonebook
The major tasks performed by phonebook are:

1 Determine the data folder and full filename.

The first statement assigns the phone book filename, 'myphonebook', to
the variable pbname. If the phonebook program is running on a Windows
system, it calls the java.lang.System static method getProperty to find
the location of the data dictionary. This is set to the user’s current working
folder. Otherwise, it uses MATLAB function getenv to determine the
location, using the system variable HOME, which you can define beforehand
to anything you like. It then assigns to pbname the full path name,
consisting of the data folder and filename ‘'myphonebook’.

function phonebook(varargin)
pbname = 'myphonebook'; % name of data dictionary
if ispc
datadir = char(java.lang.System.getProperty('user.dir'));

Example — Creating and Using a Phone Book

else
datadir = getenv('HOME');
end;
pbname = fullfile(datadir, pbname);

2 If needed, create a file output stream.

If the phonebook file does not already exist, phonebook asks the user
whether to create a new one. If the user answers y, phonebook creates
a new phone book by constructing a FileOutputStream object. In the
try clause of a try-catch block, the argument pbname passed to the
FileOutputStream constructor is the full name of the file that the
constructor creates and opens. The next statement closes the file by
calling close on the FileOutputStream object FOS. If the output stream
constructor fails, the catch statement prints a message and terminates
the program.

if ~exist(pbname)

disp(sprintf('Data file %s does not exist.', pbname));
r = input('Create a new phone book (y/n)?','s');
ifr=="'y',
try
FOS = java.io.FileQOutputStream(pbname);
FOS.close
catch
error(sprintf('Failed to create %s', pbname));
end;
else
return;
end;
end;

3 Create a hash table.

The example constructs a java.util.Properties object to serve as the
hash table for the data dictionary.

pb_htable = java.util.Properties;

4 Create a file input stream.

7-79

7 Using Sun™ Java™ Classes in MATLAB® Software

In a try block, the example invokes a FileInputStream constructor with
the name of the phone book file, assigning the object to FIS. If the call
fails, the catch statement displays an error message and terminates the

program.
try
FIS = java.io.FileInputStream(pbname);
catch
error(sprintf('Failed to open %s for reading.', pbname));
end;

5 Load the phone book keys and close the file input stream.

The example calls 1oad on the FileInputStream object FIS, to load the
phone book keys and their values (if any) into the hash table. It then closes
the file input stream.

pb_htable.load(FIS);
FIS.close;

6 Display the Action menu and get the user’s selection.

Within a while loop, several disp statements display a menu of actions
that the user can perform on the phone book. Then, an input statement
requests the user’s typed selection.

while 1
disp ' '
disp ' Phonebook Menu:'
disp ' '
disp ' 1. Look up a phone number'
disp ' 2. Add an entry to the phone book'
disp ' 3. Remove an entry from the phone book'
disp ' 4. Change the contents of an entry in the phone book'
disp ' 5. Display entire contents of the phone book'
disp ' 6. Exit this program'
disp ' '
s = input('Please type the number for a menu selection: ','s');

7 Invoke the function to perform a phone book action

7-80

Example — Creating and Using a Phone Book

Still within the while loop, a switch statement provides a case to handle
each user selection s. Each of the first five cases invokes the function to
perform a phone book action.

Case 1 prompts for a name that is a key to an entry. It calls isempty to
determine whether the user has entered a name. If a name has not been
entered, it calls disp to display an error message. If a name has been input,
it passes it to pb_lookup. The pb_lookup routine looks up the entry and, if
it finds it, displays the entry contents.

case '1',
name = input('Enter name to look up: ','s');
if isempty(name)
disp 'No name entered'
else
pb_lookup(pb_htable, name);
end;

Case 2 calls pb_add, which prompts the user for a new entry and then
adds it to the phone book.

case '2',
pb_add(pb_htable);

Case 3 uses input to prompt for the name of an entry to remove. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_remove.

case '3',
name=input('Enter name of entry to remove: ', 's');
if isempty(name)
disp 'No name entered'’
else
pb_remove(pb_htable, name);
end;

Case 4 uses input to prompt for the name of an entry to change. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_change.

case '4',
name=input ('Enter name of entry to change: ', 's');

7-81

7 Using Sun™ Java™ Classes in MATLAB® Software

7-82

if isempty(name)
disp 'No name entered'
else
pb_change(pb_htable, name);
end;

Case 5 calls pb_listall to display all entries.

case '5',
pb_listall(pb_htable);

8 Exit by creating an output stream and saving the phone book.

If the user has selected case 6 to exit the program, a try statement calls
the constructor for a FileOuputStream object, passing it the name of the
phone book. If the constructor fails, the catch statement displays an error
message.

If the object is created, the next statement saves the phone book data

by calling save on the Properties object pb_htable, passing the
FileOutputStream object FOS and a descriptive header string. It then calls
close on the FileOutputStream object, and returns

case '6',
try
FOS = java.io.FileOutputStream(pbname);
catch
error(sprintf('Failed to open %s for writing.',pbname));
end;
pb_htable.save(FOS, 'Data file for phonebook program');
FOS.close;
return;
otherwise
disp 'That selection is not on the menu.'
end;

Description of Function pb_lookup

Arguments passed to pb_lookup are the Properties object pb_htable and
the name key for the requested entry. The pb_lookup function first calls get
on pb_htable with the name key, on which support function pb_keyfilter

Example — Creating and Using a Phone Book

1s called to change spaces to underscores. The get method returns the entry
(or null, if the entry is not found) to variable entry. Note that get takes an
argument of type java.lang.Object and also returns an argument of that
type. In this invocation, the key passed to get and the entry returned from it
are actually character arrays.

pb_lookup then calls isempty to determine whether entry is null. If it is, it
uses disp to display a message stating that the name was not found. If entry
is not null, it calls pb_display to display the entry.

function pb_lookup(pb_htable,name)
entry = pb_htable.get(pb_keyfilter(name));
if isempty(entry),
disp(sprintf('The name %s is not in the phone book',name));
else
pb_display(entry);
end

Description of Function pb_add
1 Input the entry to add.

The pb_add function takes one argument, the Properties object
pb_htable. pb_add uses disp to prompt for an entry. Using the up arrow
(*) character as a line delimiter, input inputs a name to the variable
entry. Then, within a while loop, it uses input to get another line of the
entry into variable 1line. If the line is empty, indicating that the user has
finished the entry, the code breaks out of the while loop. If the line is not
empty, the else statement appends line to entry and then appends the line
delimiter. At the end, the strcmp checks the possibility that no input was
entered and, if that is the case, returns.

function pb_add(pb_htable)

disp 'Type the name for the new entry, followed by Enter.'
disp 'Then, type the phone number(s), one per line.'

disp 'To complete the entry, type an extra Enter.'

name = input(':: ','s');
entry=[name '~'];
while 1

line = input(':: ','s");

7-83

7 Using Sun™ Java™ Classes in MATLAB® Software

7-84

if isempty(line)
break;
else
entry=[entry line '~'];
end;
end;

if strcmp(entry, '*')
disp 'No name entered'
return;

end;

2 Add the entry to the phone book.

After the input has completed, pb_add calls put on pb_htable with the hash
key name (on which pb_keyfilter is called to change spaces to underscores)
and entry. It then displays a message that the entry has been added.

pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('%ss has been added to the phone book.', name));

Description of Function pb_remove
1 Look for the key in the phone book.

Arguments passed to pb_remove are the Properties object pb_htable
and the name key for the entry to remove. The pb_remove function calls
containsKey on pb_htable with the name key, on which support function
pb_keyfilter is called to change spaces to underscores. If name is not in
the phone book, disp displays a message and the function returns.

function pb_remove(pb_htable,name)
if ~pb_htable.containsKey(pb_keyfilter(name))

disp(sprintf('The name %s is not in the phone book',name))
return

end;

2 Ask for confirmation and if given, remove the key.

Example — Creating and Using a Phone Book

If the key is in the hash table, pb_remove asks for user confirmation. If
the user confirms the removal by entering y, pb_remove calls remove on
pb_htable with the (filtered) name key, and displays a message that the
entry has been removed. If the user enters n, the removal is not performed
and disp displays a message that the removal has not been performed.

r = input(sprintf('Remove entry %s (y/n)? ',name), 's');
if r == 'y’

pb_htable.remove(pb_keyfilter(name));

disp(sprintf('%ss has been removed from the phone book',name))
else

disp(sprintf('%ss has not been removed',name))

end;

Description of Function pb_change

1 Find the entry to change, and confirm.

Arguments passed to pb_change are the Properties object pb_htable
and the name key for the requested entry. The pb_change function calls
get on pb_htable with the name key, on which pb_keyfilter is called to
change spaces to underscores. The get method returns the entry (or null,
if the entry is not found) to variable entry. pb_change calls isempty to
determine whether the entry is empty. If the entry is empty, pb_change
displays a message that the name is added to the phone book, and allows
the user to enter the phone number(s) for the entry.

If the entry is found, in the else clause, pb_change calls pb_display
to display the entry. It then uses input to ask the user to confirm the
replacement. If the user enters anything other than y, the function returns.

function pb_change(pb_htable,name)
entry = pb_htable.get(pb_keyfilter(name));
if isempty(entry)
disp(sprintf('The name %s is not in the phone book', name));
return;
else
pb_display(entry);
r = input('Replace phone numbers in this entry (y/n)? ','s');
ifr-="y'
return;

7-85

7 Using Sun™ Java™ Classes in MATLAB® Software

end;
end;

2 Input new phone number(s) and change the phone book entry.

pb_change uses disp to display a prompt for new phone number(s). Then,
pb_change inputs data into variable entry, with the same statements
described in “Description of Function pb_lookup” on page 7-82.

Then, to replace the existing entry with the new one, pb_change calls put
on pb_htable with the (filtered) key name and the new entry. It then
displays a message that the entry has been changed.

disp 'Type in the new phone number(s), one per line.'
disp 'To complete the entry, type an extra Enter.'
disp(sprintf(':: %s', name));
entry=[name '"~'];
while 1
line = input(':: ','s");
if isempty(line)
break;
else
entry=[entry line '~'];
end;
end;
pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('The entry for %s has been changed', name));

Description of Function pb_listall

The pb_listall function takes one argument, the Properties object
pb_htable. The function calls propertyNames on the pb_htable object
to return to enum a java.util.Enumeration object, which supports
convenient enumeration of all the keys. In a while loop, pb_listall
calls hasMoreElements on enum, and if it returns true, pb_listall calls
nextElement on enum to return the next key. It then calls pb_display to
display the key and entry, which it retrieves by calling get on pb_htable
with the key.

7-86

Example — Creating and Using a Phone Book

function pb_listall(pb_htable)
enum = pb_htable.propertyNames;
while enum.hasMoreElements
key = enum.nextElement;
pb_display(pb_htable.get(key));
end;

Description of Function pb_display

The pb_display function takes an argument entry, which is a phone book
entry. After displaying a horizontal line, pb_display calls MATLAB function
strtok to extract the first line of the entry, up to the line delimiter (*), into t
and the remainder into r. Then, within a while loop that terminates when

t is empty, it displays the current line in t. Then it calls strtok to extract
the next line from r, into t. When all lines have been displayed, pb_display
indicates the end of the entry by displaying another horizontal line.

function pb_display(entry)

disp ' '

disp '-----mmmme e

[t,r] = strtok(entry,'~");

while ~isempty(t)
disp(sprintf(' %s',t));
[t,r] = strtok(r,'"");

end;

disp '-----imime e

Description of Function pb_keyfilter

The pb_keyfilter function takes an argument key, which is a name used
as a key in the hash table, and either filters it for storage or unfilters it for
display. The filter, which replaces each space in the key with an underscore
(), makes the key usable with the methods of java.util.Properties.

function out = pb_keyfilter(key)
if ~isempty(strfind(key,' '))
out = strrep(key,' ','_');
else
out = strrep(key,' _',"' ');
end;

7-87

7 Using Sun™ Java™ Classes in MATLAB® Software

Running the phonebook Program

In this sample run, a user invokes phonebook with no arguments. The user
selects menu action 5, which displays the two entries currently in the phone
book (all entries are fictitious). Then, the user selects 2, to add an entry. After
adding the entry, the user again selects 5, which displays the new entry along
with the other two entries.

Phonebook Menu:

. Look up a phone number

. Add an entry to the phone book

Remove an entry from the phone book

. Change the contents of an entry in the phone book
Display entire contents of the phone book

Exit this program

OO N =

Please type the number for a menu selection: 5

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

Phonebook Menu:

. Look up a phone number

. Add an entry to the phone book

Remove an entry from the phone book

. Change the contents of an entry in the phone book
Display entire contents of the phone book

Exit this program

OO N =

Please type the number for a menu selection: 2

Type the name for the new entry, followed by Enter.

7-88

Example — Creating and Using a Phone Book

Then, type the phone number(s), one per line.
To complete the entry, type an extra Enter.
BriteLites Books
(781) 777-6868

BriteLites Books has been added to the phone book.

Phonebook Menu:

Look up a phone number

. Add an entry to the phone book

. Remove an entry from the phone book

. Change the contents of an entry in the phone book
Display entire contents of the phone book

Exit this program

OO wOWN =

Please type the number for a menu selection: 5

BriteLites Books
(781) 777-6868

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

7-89

7 Using Sun™ Java™ Classes in MATLAB® Software

7-90

MATLAB Interface to .NET
Framework

e “Using .NET from MATLAB: An Overview” on page 8-2

® “Getting Started with .NET” on page 8-6

e “Using a .NET Object” on page 8-16

e “Handling .NET Data in MATLAB Software” on page 8-37
e “Using Arrays with .NET Applications” on page 8-45

e “Using Generic Classes” on page 8-56

® “Troubleshooting Security Policy Settings From a Network Drive” on page
8-65

8 MATLAB® Interface to .NET Framework

8-2

Using .NET from MATLAB: An Overview

In this section...

“What Is the Microsoft .NET Framework?” on page 8-2
“Benefits of the MATLAB .NET Interface” on page 8-2
“Why Use the MATLAB .NET Interface?” on page 8-2

“Limitations to .NET Support” on page 8-3

“What’s the Difference Between the MATLAB .NET Interface and
MATLAB® Builder NE?” on page 8-4

“Requirements” on page 8-4
“Using a .NET assembly in MATLAB” on page 8-5
“To Learn More About the .NET Framework” on page 8-5

What Is the Microsoft .NET Framework?

The Microsoft .NET Framework is an integral Windows component that
provides a large body of precoded solutions to common program requirements,
and manages the execution of programs written specifically for the
Framework.

MATLAB software supports the .NET Framework on the Windows platform
only.

Benefits of the MATLAB .NET Interface
The MATLAB .NET interface enables you to:

® (Create instances of .NET classes.

¢ Interact with .NET applications via their class members.

Why Use the MATLAB .NET Interface?

Use the MATLAB .NET interface to take advantage of the capabilities of the
Microsoft NET Framework. For example:

Using .NET from MATLAB®: An Overview

® You have a professionally developed .NET assembly and want to use it to
do certain operations, such as access hardware.

® You want to leverage the capabilities of programming in .NET (for example,
you have existing C# programs).

® You want to access existing Microsoft-supplied classes for .NET.

Limitations to .NET Support

MATLAB supports the .NET features C# supports, except for the limits noted
in the following table.

Features Not Supported in MATLAB

Cannot use ClassName.propertyname syntax to set static properties. Use
NET.setStaticProperty instead.

Unloading an assembly

Passing a cell array, structure array, sparse array, or complex number to
a .NET property or method

Subclassing .NET classes from MATLAB

Accessing nonpublic class members

Displaying generic methods using methods or methodsview functions

Creating an instance of a nested class

Saving (serializing) .NET objects into a MAT-file

Creating .NET arrays with a specific lower bound

Creating ragged (nonrectangular) NET arrays

Concatenating multiple .NET objects into an array

Implementing interface methods

Hosting .NET controls in figure windows

Casting operations

Delegates, except for events

Non-Int32 underlying types for enumerations

8-3

8 MATLAB® Interface to .NET Framework

Features Not Supported in MATLAB

Calling constructors or NET.invokeGenericMethod with ref or out type
arguments

Using System.Console.WriteLine to write text to the command window

Pointer type arguments, function pointers, System.Nullable type,
Dllimport keyword

Calling methods with default arguments
(System.Reflection.Missing.Value not supported.)

.NET remoting

Auto-conversion of multidimensional arrays

Using the MATLAB : (colon) operator in a foreach iteration

Support for .NET objects which are a wrapper of a COM object (commonly
used by Microsoft Office 2007 applications)

What'’s the Difference Between the MATLAB .NET
Interface and MATLAB Builder NE?

The MATLAB .NET interface is for MATLAB users who want to use .NET
assemblies in MATLAB.

MATLAB® Builder™ NE (previously called .NET Builder) packages MATLAB
functions so that .NET programmers can access them. It brings MATLAB
into .NET applications. For more information about this product, follow

the instructions for accessing “Product Documentation at the MathWorks
Web Site” in the MATLAB Desktop Tools and Development Environment
documentation.

Requirements
The MATLAB interface to .NET is available on the Windows platform only.

You must have the Microsoft .NET Framework installed on your system. The

MATLAB interface supports the features of the .NET Framework Version 2.0,
and works with Version 2.0 or above.

8-4

Using .NET from MATLAB®: An Overview

To use a .NET application, refer to your product documentation for
information about how to install the program and for details about its
functionality.

Using a .NET assembly in MATLAB
For an example of using .NET in MATLAB, see:

® “Getting Started with .NET” on page 8-6
For detailed information, see:

e “Loading .NET Assemblies into MATLAB” on page 8-14
e “Using a .NET Object” on page 8-16

To Learn More About the .NET Framework

For a complete description of the .NET Framework, you need to consult
outside resources.

One source of information is the Microsoft Developer Network at
http://msdn.microsoft.com/en-us/default.aspx. You can explore

the .NET Framework Development Center or search the MSDN® site for

the term “NET Framework”. The .NET Framework Class Library is a
programming reference manual. Many examples in this documentation refer
to classes in this library. There are different versions of the .NET Framework
documentation. See “Requirements” on page 8-4 for information about version
support in MATLAB.

http://msdn.microsoft.com/en-us/default.aspx

8 MATLAB® Interface to .NET Framework

Getting Started with .NET

In this section...

“What Is an Assembly?” on page 8-6

“NET Terminology” on page 8-7

“Example — Using System Resources” on page 8-8
“Simplifying .NET Class Names” on page 8-14
“Loading .NET Assemblies into MATLAB” on page 8-14
“Handling Exceptions” on page 8-15

What Is an Assembly?

Assemblies are the building blocks of .NET Framework applications; they
form the fundamental unit of deployment, version control, reuse, activation
scoping, and security permissions. An assembly is a collection of types and
resources built to work together and form a logical unit of functionality.

To work with a .NET application, you need to make its assemblies visible to
MATLAB. How you do this depends on how the assembly is deployed, either
privately or globally.

e A global assembly is shared among applications and installed in a common
directory, called the Global Assembly Cache (GAC).

® A private assembly is used by a single application.

To load a global assembly into MATLAB, use the short name of the assembly,
which is the file name without the extension. To load a private assembly, you
need the full path (folder and file name with extension) of the assembly. This
information is in the product documentation for the assembly. Refer to the
product documentation for everything you need to know to use your product.

Getting Started with .NET

MATLAB loads the following assemblies from the .NET Framework class
library at startup:

® mscorlib.dll

e system.dll

To use any other .NET assembly, load the assembly using the
NET.addAssembly command. After loading the assembly, you can work with
the classes defined by the assembly.

For an example showing you how to find the information you need to work
with assemblies, see:

e “Example — Using System Resources” on page 8-8
For detailed information, see:

e “Loading .NET Assemblies into MATLAB” on page 8-14
e “Using a .NET Object” on page 8-16

.NET Terminology

A namespace is a way to group identifiers. A namespace can contain other
namespaces. In MATLAB, a namespace is a package. In MATLAB, a .NET
type is a class.

The syntax namespace.ClassName is known as a fully qualified name.

.NET Framework System Namespace

The System namespace is the root namespace for fundamental types in

the .NET Framework. This namespace also contains classes (for example,
System.String and System.Array) and second-level namespaces (for
example, System.Collections.Generic). The mscorlib and system
assemblies, which MATLAB loads at startup, contain many, but not

all System namespaces. For example, to use classes in the System.Xml
namespace, load the system.xml assembly using the NET.addAssembly
command. Refer to the Microsoft .NET Framework Class Library Reference
to learn what assembly to use for a specific namespace.

8 MATLAB® Interface to .NET Framework

8-8

Reference Type Versus Value Type

Objects created from .NET classes (for example, the
System.Reflection.Assembly class) appear in MATLAB as reference types,
or handle objects. Objects created from .NET structures (for example, the
System.DateTime structure) appear as value types. You use the same
MATLAB syntax to create and access members of classes and structures.

However, handle objects are different from value objects. When you copy a
handle object, only the handle is copied and both the old and new handles
refer to the same data. When you copy a value object, the object’s data is also
copied and the new object is independent of changes to the original object.
For more information about these differences, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Do not confuse an object created from a .NET structure with a MATLAB
structure array (see “Structures” in the Programming Fundamentals
documentation). You cannot pass a structure array to a .NET method.

Example — Using System Resources

Suppose you want to work with calendar information and need to create
variables to hold day, month, and year values. You can search the online
Microsoft .NET Framework System namespace product documentation

for data types and functions to support date and time functionality. For
information about using this documentation, see “To Learn More About the
.NET Framework” on page 8-5.

Get Assembly Information

The DateTime structure in the System namespace represents an instance of
time, typically expressed as a date and time of day. Refer to the DateTime
reference page for the following information:

¢ The assembly name is mscorlib. Since MATLAB loads the mscorlib
assembly at startup, you do not need to use the NET.addAssembly
command.

® The namespace is System. The following examples use the System
namespace in each command. This is not necessary if you use the import
command, as described in “Simplifying .NET Class Names” on page 8-14.

Getting Started with .NET

View Properties
To see the available properties, type:

properties System.DateTime

MATLAB displays:

Properties for class System.DateTime:

Date

Day
DayOfWeek
DayOfYear
Hour

Kind
Millisecond
Minute
Month

Now
UtcNow
Second
Ticks
TimeOfDay
Today
Year
MinValue
MaxValue

View Methods

To use the Day, Month and Year properties, create a System.DateTime object.
To find the function to use to create the object, type:

methods System.DateTime

MATLAB displays:

Methods for class System.DateTime:

Add GetType ToUniversalTime

8-9

8 MATLAB® Interface to .NET Framework

8-10

AddDays
AddHours
AddMilliseconds
AddMinutes
AddMonths
AddSeconds
AddTicks
AddYears
CompareTo
DateTime

Equals
GetDateTimeFormats
GetHashCode

Static methods:

Compare
DaysInMonth
FromBinary
FromFileTime
FromFileTimeUtc
FromOADate
IsLeapYear

GetTypeCode
IsDaylightSavingTime
Subtract

ToBinary
ToFileTime
ToFileTimeUtc
ToLocalTime
ToLongDateString
ToLongTimeString
ToOADate
ToShortDateString
ToShortTimeString
ToString

Parse
ParseExact
SpecifyKind
TryParse
TryParseExact
op_Addition
op_Equality

Select a Constructor
The method to use to create an object is DateTime. This is known as the

DateTime constructor. To call this method, you need to know its argument
list, or function signature. Type:

methodsview System.DateTime

addlistener
delete
eq
findobj
findprop
ge

gt
isvalid
le

1t

ne
notify

op_GreaterThan
op_GreaterThanOrEqual
op_Inequality
op_LessThan
op_LessThanOrEqual
op_Subtraction

Search the list that MATLAB displays for entries beginning with:

System.DateTime obj DateTime(int32 scalar year,

Getting Started with .NET

From the product documentation, you see that the following signature
Initializes a new instance of the DateTime structure to the specified year,
month, and day.

System.DateTime obj DateTime (int32 scalar year,

int32 scalar month, int32 scalar day)

Create an Object
Create an object dateObj for the date January 31, 2000:

dateObj = System.DateTime (2000,1,31);

This command sets the following properties:

dateObj.Day
dateObj.Month
dateObj.Year

to the values:

ans =
31

ans =
1

ans =
2000

Display Object in the Command Window
To see how MATLAB displays object information, type:

dateObj

MATLAB displays:

dateObj =

System.DateTime
Package: System

Properties:

8-11

8 MATLAB® Interface to .NET Framework

Date: [1x1 System.DateTime]
Day: 31
DayOfWeek: [1x1 System.DayOfWeek]
DayOfYear: 31
Hour: O
Kind: [1x1 System.DateTimeKind]
Millisecond: O
Minute: O
Month: 1
Now: [1x1 System.DateTime]
UtcNow: [1x1 System.DateTime]
Second: O
Ticks: 630848736000000000
TimeOfDay: [1x1 System.TimeSpan]
Today: [1x1 System.DateTime]
Year: 2000
MinValue: [1x1 System.DateTime]
MaxValue: [1x1 System.DateTime]

Methods, Events, Superclasses

Work with Properties and Methods

Refer to the properties listed in “View Properties” on page 8-9. To see the
day of the week, type:

dateObj.DayOfWeek

MATLAB displays:

ans =
Monday

To get more information about dateObj, refer to the methods listed in “View
Methods” on page 8-9. For example, to use the DaysInMonth method, look at
its function signature in the methodsview window:

Static int32 scalar RetVal DaysInMonth (int32 scalar year,
int32 scalar month)

8-12

Getting Started with .NET

This i1s a static method, and its inputs are year and month. To display the
number of days in the dateObj month, type:

System.DateTime.DaysInMonth(dateObj.Year, dateObj.Month)

To determine if one date occurs before another date, look at the CompareTo
function signature:

int32 scalar RetVal CompareTo(System.DateTime this,
System.DateTime value)

This method requires two DateTime objects, this and value. Create a second
date, myDate, and compare it to dateObj:

myDate = System.DateTime(dateObj.Year,3,1);
dateObj.CompareTo(myDate)

MATLAB displays a signed number. According to the CompareTo
documentation, if the number is less than zero, dateObj is “less than,” or
earlier than, myDate.

To calculate the number of days between these dates, use the DayOfYear
property.

dateObj.DayOfYear - myDate.DayOfYear
Other methods to try:
dateObj.ToString
dateObj.IsDaylightSavingTime
Using Today and Now
Create an object, todayDate, with today’s date:
todayDate = System.DateTime.Today;
The Today property only sets the date, so when you type:

todayDate.Hour

MATLAB displays:

8-13

8 MATLAB® Interface to .NET Framework

8-14

ans =

To display time information, type:

todayDate.Now

MATLAB displays values for the Hour, Minute, and Second properties.

Simplifying .NET Class Names

In a MATLAB command, you can refer to any class by its fully qualified
name, which includes its package name. A fully qualified name can be rather
long, making commands and functions, such as constructors, cumbersome to
edit and to read. You can refer to classes by the class name alone (without a
package name) if you first import the fully qualified name into MATLAB. The
import function adds all classes that you import to a list called the import
list. You can see what classes are on that list by typing import, without any
arguments.

For example, to eliminate the need to type System. before every command in
the previous example, type:

import System.*
import System.DateTime.*

To create the object, type:

dateObj = DateTime.Today;

To use a static method, type:

DaysInMonth(dateObj.Year, dateObj.Month);

Loading .NET Assemblies into MATLAB

If MATLAB does not automatically load your assembly, use the
NET.addAssembly function. The syntax is:

asmInfo = NET.addAssembly('assemblyName');

Getting Started with .NET

You need to know if the assembly is global or private, as explained in “What Is
an Assembly?” on page 8-6. Your product documentation has this information.

You cannot unload an assembly from MATLAB.

Handling Exceptions

MATLAB catches exceptions thrown by .NET and converts them into a
NET.NetException object, which is derived from the MException class. The
default display of NetException contains the Message, Source and HelpLink
fields of the System.Exception class that caused the exception. For example:

try
NET.addAssembly('C:\Work\invalidfile.d1l1l"')
catch e
e.message
if(isa(e, 'NET.NetException'))
e.ExceptionObject
end
end

8-15

8 MATLAB® Interface to .NET Framework

8-16

Using a .NET Object

In this section...

“Creating a .NET Object” on page 8-16

“Using netdoc.NetSample” on page 8-16

“NET Properties in the MATLAB Workspace” on page 8-18
“NET Methods in the MATLAB Workspace” on page 8-24
“NET Events in the MATLAB Workspace” on page 8-34
“What Classes Are in a .NET Assembly?” on page 8-35
“Using the delete Function on a .NET Object” on page 8-36

Creating a .NET Object

You often need to create objects when working with .NET classes. An object
is an instance of a particular class. Methods are functions that operate
exclusively on objects of a class. Data types package together objects and
methods so that the methods operate on objects of their own type. For
more information about objects, see “Using Objects” in the Programming
Fundamentals documentation.

You construct .NET objects in the MATLAB workspace by calling the class
constructor, which has the same name as the class. The syntax to create
a .NET object classObj is:

classObj = namespace.ClassName(varargin)

where varargin is the list of constructor arguments to create an instance of
the class specified by ClassName in the given namespace. For an example, see
“Select a Constructor” on page 8-10 in “Getting Started with .NET” on page
8-6.

Using netdoc.NetSample

MATLAB includes a collection of sample C# classes in an assembly called
NetSample. The examples in this topic use these classes to illustrate working
with .NET objects in MATLAB.

Using a .NET Object

Reference NetSample

Namespace netdoc

Assembly NetSample (in NetSample.dll)

Source files NetSample.sln and .cs files

Source folder matlabroot\extern\examples\net\NetSample

NetSample contains the following classes.

Class Name Purpose

SampleProperties Sample declarations to show how
MATLAB handles .NET properties

SampleFields Sample declarations to show how
MATLAB handles .NET fields

SampleMethods Sample declarations to show how
MATLAB handles .NET methods

SampleMethodSignature Sample declarations to show how
MATLAB displays .NET method
signatures

To use the NetSample classes, build an application using a C# development
tool, like Microsoft Visual Studio. The following are basic steps to do this;
consult your development tool documentation for specific instructions.

1 Copy the contents of the matlabroot\extern\examples\net\NetSample
folder to a working folder, such as C: \work.

2 From your development tool, open NetSample as a project and build it as a
DLL.

3 The name of this assembly is NetSample. Note the full path to the

NetSample.dll file. Since it is a private assembly, you must use the full
path to load it in MATLAB.

4 After you load the assembly, if you modify and rebuild it, you must restart

MATLAB to access the new assembly. You cannot unload an assembly
in MATLAB.

8-17

8 MATLAB® Interface to .NET Framework

.NET Properties in the MATLAB Workspace
The following topics describe using .NET properties in MATLAB.

e “Using Properties in MATLAB” on page 8-18

® “C# Property Access Modifiers” on page 8-18

e “NET Fields in the MATLAB Workspace” on page 8-19

e “Using .NET Properties Example” on page 8-19

e “Using .NET Fields Example” on page 8-22

e “Limitations to Support of .NET Properties” on page 8-23

Using Properties in MATLAB

Use the properties function to view property names. For an example using
the System.DateTime structure, see “View Properties” on page 8-9. To get
and set the value of a class property, use the standard MATLAB dot notation:

x = myObject.MyProp; %get
myObject.MyProp = y; %set

C# Property Access Modifiers

MATLAB maps C# keywords to MATLAB property attributes, as shown
in the following table. For more information about MATLAB properties,
see “Property Attributes” in the MATLAB Object-Oriented Programming

documentation.

C# Keyword MATLAB Atiribute

public, static Access = public

protected, private, internal Not visible to MATLAB

get, set Access = public

Get GetAccess = public, SetAccess =
private

Set SetAccess = public, GetAccess =
private

8-18

Using a .NET Object

.NET Fields in the MATLAB Workspace

MATLAB represents public fields as properties. For example, the
System.String class has one field, Empty. To view it, type:

str = System.String('my new string');
properties(str)

MATLAB displays:
Properties for class System.String:
Length
Empty

MATLAB maps C# keywords to MATLAB field attributes, as shown in the
following table.

C# Keyword MATLAB Mapping
public Supported

protected, private, internal, | Not visible to MATLAB
protected internal

Using .NET Properties Example
The SampleProperties class defines the following public properties:

e stringProp
® doubleProp

® readOnlyProp
® writeOnlyProp

SampleProperties Class.

using System;
namespace netdoc

{

class SampleProperties

{
// string property

8-19

8 MATLAB® Interface to .NET Framework

private static string stringField = "The MathWorks";
public static string stringProp
{

get { return stringField; }
set { stringField = value; }

}

// read/write property
private double doubleField = 8.9;
public double doubleProp

{
get { return doubleField; }
set { doubleField = value; }

}

// read-only property
private double readField = 0;
public double readOnlyProp

{
get { return readField; }

}

// write-only property
private double writeField = 0;
public double writeOnlyProp

{

set { writeField = value; }

}
}

Create Object. Load the assembly and create object obj:

sampleInfo = NET.addAssembly('c:\work\NetSample.dll');
obj = netdoc.SampleProperties

MATLAB displays the object as follows:

obj =
netdoc.SampleProperties handle

8-20

Using a .NET Object

Package: netdoc

Properties:
stringProp: [1x1 System.String]
doubleProp: 8.9000
readOnlyProp: O

Methods, Events, Superclasses

MATLAB displays the stringProp, doubleProp, and readOnlyProp
properties, but not the writeOnlyProp property. MATLAB also does not
display properties defined with the private keyword, such as stringField
and doubleField.

View Property Values. To view the value of stringProp, type:
obj.stringProp
MATLAB displays:

ans =
The MathWorks

Use Property Values. To use the properties, type:

db1
db2

obj.doubleProp
obj.readOnlyProp

MATLAB displays:

db1
.9000

I o I

db2
0

Modify Property Values. To modify the properties, type:
obj.doubleProp = 5;

obj.writeOnlyProp = 6;
obj

8-21

8 MATLAB® Interface to .NET Framework

MATLAB displays (in part):
obj =

Properties:

stringProp: [1x1 System.String]
doubleProp: 5
readOnlyProp: O

To modify the static property stringProp, type:
NET.setStaticProperty('netdoc.SampleProperties.stringProp’',

'This is a static property');
newVal = obj.stringProp

MATLAB displays:

newVal =

This is a static property
Using .NET Fields Example

The SampleFields class defines the following fields:

® publicField
® protectedField

SampleFields Class.

using System;
namespace netdoc

{
class SampleFields
{
public Int32 publicField;
protected string protectedField;
}
}

Create Object. Load the assembly and create object obj:

8-22

Using a .NET Object

NET.addAssembly('c:\work\NetSample.dll"')
obj = netdoc.SampleFields;

Modify Field Values. To set the value of the field publicField, type:

myValue = 3;
obj.publicField = myValue

MATLAB displays:

obj =
netdoc.SampleFields handle
Package: netdoc

Properties:
publicField: 3

Methods, Events, Superclasses

The publicField property is of type Int32. When you set the value to
myValue, which is of MATLAB type double, MATLAB automatically converts
the value to the proper type, as described in “Passing Data to a .NET Object”
on page 8-37. Type:

class(myValue)
class(obj.publicField)

MATLAB displays:

ans =
double
ans =
int32

Limitations to Support of .NET Properties

You cannot pass a cell array to a property, or view protected properties in
MATLAB.

8-23

8 MATLAB® Interface to .NET Framework

.NET Methods in the MATLAB Workspace
The following topics describe using .NET methods in MATLAB.

® “Getting Method Information” on page 8-24

e “Calling Nonstatic Methods” on page 8-25

e “Calling Static Methods” on page 8-25

e “Calling Generic Methods” on page 8-26

e “Calling .NET Properties That Take an Argument” on page 8-26
® “C# Method Access Modifiers” on page 8-26

e “Method Signatures” on page 8-27

e “Operator Overloading” on page 8-29

¢ “Using .NET Methods Example” on page 8-30

e “Method Signature Example” on page 8-32

¢ “Limitations to Support of .NET Methods” on page 8-34

Getting Method Information
Use the following MATLAB functions to view the methods of a class. You

can use these functions without creating an instance of the class. These
functions do not list generic methods; use your product documentation to
get information on generic methods.

* methods — View method names

® methods with '-full' option — View method names with argument list
* methodsview — Graphical representation of method list

You might find the methodsview window easier to use as a reference
guide because you do not need to scroll through the Command Window

to find information. For example, open a methodsview window for the
System.String class:

methodsview('System.String"')

The following topics refer to method signatures in this display.

8-24

Using a .NET Object

Calling Nonstatic Methods

You can use either function notation or dot notation syntax for calling
standard (nonstatic) methods of a class. These functions operate on an object.
For example, Contains is a method of the System.String class. Its method
signature is:

logical scalar RetVal Contains(System.String this,
System.String value)

To use this method, first create an object, stri:

str1 = System.String('The colors are red and white');

To call Contains using function notation, type:

flag = Contains(stri,'red');

To call Contains using dot notation, type:

flag = stri1.Contains('red');

In either case, the value of flag is 1 (true).

Calling Static Methods

A static method does not operate on a single object. You must use the fully
qualified name when you call a static method. For example, Concat is a static
method of the System.String class. One of its method signatures is:

Static System.String RetVal Concat(System.String stro,
System.String str1, System.String str2)

Given the following value for object str2:

str2 = System.String(' and blue');

you must use the function notation to concatenate stri1 and str2:

newstr = System.String.Concat(stri,str2)

MATLAB displays:

8-25

8 MATLAB® Interface to .NET Framework

8-26

newstr =
The colors are red and white and blue

Calling Generic Methods

Use the NET.invokeGenericMethod function to call a generic method

Calling .NET Properties That Take an Argument

MATLAB represents a property that takes an argument as a method. For
example, the System.String class has two properties, Chars and Length.
The Chars property gets the character at a specified character position in
the System.String object:

str = System.String('my new string');
methods (str)

MATLAB displays (in part):

Methods for class System.String:

Chars Insert ToCharArray findobj
Clone IsNormalized ToLower findprop
CompareTo LastIndexOf ToLowerInvariant ge
Contains LastIndexOfAny ToString gt

To see the first character, type:

str.Chars(0)

MATLAB displays:

ans =
m

C# Method Access Modifiers

MATLAB maps C# keywords to MATLAB method access attributes, as shown
in the following table.

Using a .NET Object

C# Keyword MATLAB Attribute
ref RHS, LHS

out LHS

params Array of particular type
protected, private, internal, Not visible to MATLAB

protected internal

VB.NET Keyword MATLAB Attribute
ByRef LHS, RHS

Byval RHS

Optional Mandatory

Method Signatures
MATLAB uses the following rules to populate method signatures.

® 0obj is the output from the constructor.

® this is the object argument.

e RetVal is the return type of a method.

e All other arguments use the .NET metadata.

MATLAB uses the following rules to select a method signature.

e Number of inputs

e Input type

e Number of outputs

Limitations to Overloaded Methods Using out Keyword. MATLAB

cannot pick a method signature based on output type. For example, a C# class
defines the following overloaded method outMethod:

public void outMethod(out double db)
{

8-27

8 MATLAB® Interface to .NET Framework

8-28

}
public void outMethod(out String str)
{
str = "from outMethod";
}

The MATLAB signatures for outMethod are:

double scalar db outMethod(this)
System.String str outMethod(this)

When you create an object obj from this class and call outMethod:

X = obj.outMethod

MATLAB chooses the first signature, making x a variable of type double.

Limitations to Overloaded Methods Using ref Keyword. The way
MATLAB treats the ref keyword can cause unexpected results with
overloaded functions using the same types. For example, a C# class defines
the following method myMethod:

public void myMethod(ref double db)
{
db = db * 2;
}

Since MATLAB treats the ref keyword as both an input and output
parameter, the MATLAB signature for myMethod is:

double scalar myMethod(this, double scalar db)

Suppose you define the following overloaded method in C#, using the same
types, but without the ref keyword:

public double myMethod(double db)
{

return db * 3;

}

Using a .NET Object

The MATLAB signature for this method is the same and MATLAB overwrites
the previous signature. Calling myMethod:

X = myMethod(2)

returns the value 6.

Operator Overloading

MATLAB supports overloaded operators, such as the C# operator symbols
+ and *, as shown in the following table. MATLAB implements all

other overloaded operators, such as % and +=, by their static method
names, op_Modulus and op_AdditionAssignment. For a complete

list of operator symbols and the corresponding operator names, see
http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx on
the Microsoft Developer Network Web site.

C++ operator symbol | .NET operator MATLAB methods
+ (binary) op_Addition plus, +

- (binary) op_Subtraction minus, -

* (binary) op_Multiply mtimes, *

/ op_Division mrdivide, /
&& op_LogicalAnd and, &

|| op_Logicalor or, |

== op_Equality eq, ==

> op_GreaterThan gt, >

< op_LessThan 1t, <

1= op_Inequality ne, ~=

>= op_GreaterThanOrEqual ge, >=

<= op_LessThanOrEqual le, <=

- (unary) op_UnaryNegation uminus, -a
+ (unary) op_UnaryPlus uplus, +a

8-29

http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx

8 MATLAB® Interface to .NET Framework

Using .NET Methods Example
The SampleMethods class defines the following methods:

® addTwoDoubles
® multiplyInts
® refOutTest

® paramsTest

SampleMethods Class.

using System;
namespace netdoc
{
class SampleMethods
{
//static method
public static double addTwoDoubles(double numi, double num2)
{

return numi + num2;

}

//standard method
public Int32 multiplyInts(Int32 numi, Int32 num2)
{

return numi * num2;

}

//test ref and out keyword
public void refQutTest(ref double db1, out double db2)
{
db1
db2

db1 * 2;
db1;

}

//test params keyword
public int paramsTest(params int[] num)

{
int total = 0;

8-30

Using a .NET Object

foreach (int i in num)

{
total = total + i;

}

return total;

}

Calling Methods Examples. If you have not already loaded the NetSample
assembly, type:

NET.addAssembly('c:\work\NetSample.dll"')

Call the static method addTwoDoubles:

db1 = netdoc.SampleMethods.addTwoDoubles(2, 3)

MATLAB displays:

db1 =
5

To call the nonstatic method multiplyInts, you must first create an object:

obj = netdoc.SampleMethods;
db2 obj.multiplyInts(2, 3)

MATLAB displays:

db2 =
6

To capture the output from a method using the ref and out keywords, use
the refOutTest method. Its function signature is:

[double scalar db1, double scalar db2] refOutTest
(netdoc.SampleMethods this, double scalar dbt)

Type:

8-31

8 MATLAB® Interface to .NET Framework

[db4 db3] = obj.refOutTest(6)

MATLAB displays:

db4 =
12

db3 =
12

To call a method using a params keyword, use the paramsTest method. The
function signature is:

int32 scalar RetVal paramsTest(netdoc.SampleMethods this,
System.Int32[] num)

Type:

mat = [1, 2, 3, 4, 5, 6];
mat NET.convertArray(int32(mat));
db5 obj.paramsTest(mat)

MATLAB displays:

db5 =
21

Method Signature Example
The SampleMethodSignature class defines the following three constructors:

® netdoc.SampleMethodSignature obj SampleMethodSignature

® netdoc.SampleMethodSignature obj SampleMethodSignature (double
scalar d)

® netdoc.SampleMethodSignature obj SampleMethodSignature
(System.String s)

SampleMethodSignature Class.

using System;
namespace netdoc

{

8-32

Using a .NET Object

public class SampleMethodSignature

{
public SampleMethodSignature ()

{}

public SampleMethodSignature (double d)
{ myDoubleField = d; }

public SampleMethodSignature (string s)
{ myStringField = s; }

public int myMethod(string strIn, ref double dbRef,
out double dbOut)

{
dbRef += dbRef;
dbOut = 65;
return 42;
}
private Double myDoubleField = 5.5;
private String myStringField = "hello";

}

Display Function Signature Example. If you have not already loaded the
NetSample assembly, type:

NET.addAssembly('c:\work\NetSample.dll"')
Create an SampleMethodSignature object obj:

obj = netdoc.SampleMethodSignature;
To see the method signatures, type:

methods(obj, '-full')
Look for the following signatures in the MATLAB output:

netdoc.SampleMethodSignature obj SampleMethodSignature
netdoc.SampleMethodSignature obj SampleMethodSignature(double scalar d)

8-33

8 MATLAB® Interface to .NET Framework

netdoc.SampleMethodSignature obj SampleMethodSignature(System.String s)

For more information about argument types, see “Handling Data Returned
from a .NET Object” on page 8-43.

Limitations to Support of .NET Methods

You cannot pass a cell array to a .NET method or call any delegates. The
methods and methodsview functions do not list generic methods.

Because of the way MATLAB treats the C# ref and out keywords, you
might not get the expected result when using overloaded methods. For more
information, see “Limitations to Overloaded Methods Using out Keyword”
on page 8-27 and “Limitations to Overloaded Methods Using ref Keyword”
on page 8-28. Also, do not use NET. invokeGenericMethod for methods
containing the C# ref or out keywords.

.NET Events in the MATLAB Workspace

Use the addlistener function to handle events from .NET objects.

For example, you can monitor changes to files using the
System.I0.FileSystemWatcher class in the System assembly. Create the
following event handler, eventhandlerChanged.m:

function eventhandlerChanged(source,arg)
disp('TXT file changed')
end

Create a FileSystemWatcher object TileObj and watch the Changed event for
files with a .txt extension in the folder C:\work\temp.

fileObj = System.IO.FileSystemWatcher('c:\work\temp');
fileObj.Filter = '*.txt';

fileObj.EnableRaisingEvents = true;
addlistener(fileObj, 'Changed', @eventhandlerChanged);

If you modify and save a .txt file in the C:\work\temp folder, MATLAB
displays:

TXT file changed

8-34

Using a .NET Object

The FileSystemWatcher documentation says that a simple file operation can
raise multiple events.

To turn off the event handler, type:

fileObj.EnableRaisingEvents = false;

What Classes Are in a .NET Assembly?

The product documentation for your assembly contains information about
its classes. However, you can use the NET.addAssembly command to read
basic information about an assembly. For example, for the private assembly
netdoc.NetSample, type

sampleInfo = NET.addAssembly('c:\work\NetSample.dll');

Assembly netdoc.NetSample has five classes. To view the names, type:

sampleInfo.Classes

MATLAB displays:

ans =
'netdoc.SampleMethodSignature'
‘netdoc.SampleMethods’
'netdoc.NetSample'
'netdoc.SampleFields'
‘netdoc.SampleProperties’

For a description of the Sample* classes, see “Using netdoc.NetSample” on
page 8-16. The NetSample class is empty; it is used to create the assembly
name.

If your assembly has hundreds of entries, you can consult the product
documentation, or open a window to an online document, such as the
System namespace reference page on the Microsoft Developer Network. For
information about using this documentation, see “To Learn More About the
.NET Framework” on page 8-5. For example, to find the number of classes
nclasses in mscorlib, type

asm = NET.addAssembly('mscorlib');

8-35

8 MATLAB® Interface to .NET Framework

8-36

[nclasses,x] = size(asm.Classes);

Using the delete Function on a .NET Object

Objects created from .NET classes appear in MATLAB as reference types, or
handle objects. Calling the delete function on a .NET handle releases all
references to that .NET object from MATLAB, but does not invoke any .NET
finalizers. The .NET Framework manages garbage collection.

For more information about managing handle objects, see “Destroying
Objects”.

Handling .NET Data in MATLAB® Software

Handling .NET Data in MATLAB Software

In this section...
“Passing Data to a .NET Object” on page 8-37
“Handling Data Returned from a .NET Object” on page 8-43

Passing Data to a .NET Object

When you make a call in the MATLAB software to a .NET method or function,
MATLAB automatically converts arguments into .NET types. MATLAB
performs this conversion on each passed argument, except for arguments
that are already .NET objects.

The following topics provide information about passing data to .NET:

e “Passing Primitive .NET Types” on page 8-37

e “Passing Nonprimitive .NET Objects” on page 8-38

e “Passing MATLAB Strings” on page 8-39

e “Passing NULL Values” on page 8-39

¢ “Unsupported MATLAB Types” on page 8-39

® “Choosing Method Signatures” on page 8-39

¢ “Example — Choosing a Method Signature” on page 8-40
¢ “Passing Arrays” on page 8-41

¢ “Example — Passing Arrays” on page 8-42

Passing Primitive .NET Types

The following table shows the MATLAB base types for passed arguments and
the corresponding .NET types defined for input arguments. Each row shows a
MATLAB type followed by the possible .NET argument matches, from left to
right in order of closeness of the match.

8-37

8 MATLAB® Interface to .NET Framework

8-38

MATLAB Primitive Type Conversion Table

MATLAB

Closest Type <— —— — — Other Matching .NET Types — —— — —> Least Close Type

Type Preface Each .NET Type with Systen.

logical| Boolean| Byte SByte Int16 UInt16 | Int32 UInt32 | Int64 UInt64 | Single | Double | Object
double | Double | Single | Decimal| Int64 UInt64 | Int32 UInt32 | Int16 UInt16 | SByte Byte Object
single | Single | Double | Decimal| Object

int8 SByte Int16 Int32 Int64 Single | Double | Object

uint8 Byte UInt16 | UInt32 | UInt64 | Single | Double | Object

int16 Int16 Int32 Int64 Single | Double | Object

uint16 | UInt16 | UInt32 | UInt64 | Single | Double | Object

int32 Int32 Int64 Single | Double | Object

uint32 | UInt32 | UInt64 | Single | Double | Object

int64 Int64 Double | Object

uint64 | UInt64 | Double | Object

char Char String | Object

The following primitive .NET argument types do not have direct MATLAB
equivalent types. MATLAB passes these types as is:

® System.IntPtr

® System.UIntPtr

e System.Decimal

® enumerated types

Passing Nonprimitive .NET Objects
When calling a method that has an argument of a particular .NET class, you
must pass an object that is an instance of that class or its derived classes.
You can create such an object using the class constructor, or use an object
returned by a member of the class. When a class member returns a .NET
object, MATLAB leaves it as a .NET object so you can continue to use it to
interact with other class members.

Handling .NET Data in MATLAB® Software

Passing MATLAB Strings

To convert a string or char array to a .NET System.String object:

mlArray = 'This is a string';
netArray = System.String(mlArray);

mlArrayType = class(mlArray)
netArrayType = class(netArray)

MATLAB displays:

mlArrayType =
char
netArrayType =
System.String

Passing NULL Values
MATLAB uses empty double ([]) values for reference type arguments.

Unsupported MATLAB Types
You cannot pass the following MATLAB types to .NET methods:

® Structure arrays
e (Cell arrays
® Sparse arrays

e Complex numbers

Choosing Method Signatures

MATLAB chooses the correct .NET method signature (including constructor,
static and nonstatic methods) based on the following criteria.

When your MATLAB function calls a .NET method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a
method by that name.

8-39

8 MATLAB® Interface to .NET Framework

8-40

2 Determines whether the invocation passes the same number of arguments
of at least one method with that name.

3 Makes sure that each passed argument can be converted to the type defined
for the method.

If all the preceding conditions are satisfied, MATLAB calls the method.

In a call to an overloaded method, if there is more than one candidate,
MATLAB selects the one with arguments that best fit the calling arguments,
based on the MATLAB® Primitive Type Conversion Table on page 8-38.
First, MATLAB rejects all methods that have any argument types that are
incompatible with the passed arguments. Among the remaining methods,
MATLAB selects the one with the highest fitness value, which is the sum of
the fitness values of all its arguments. The fitness value for each argument
is how close the MATLAB type is to the .NET type. If two methods have the
same fitness, MATLAB chooses the first one defined in the class.

For class types, MATLAB chooses the method signature based on the distance
of the incoming class type to the expected .NET class type. The closer the
incoming type is to the expected type, the better the match.

Example — Choosing a Method Signature

Open a methodsview window for the System.String class and look at the
entries for the Concat method:

import System.*
methodsview('System.String"')

The Concat method takes one or more arguments. If the arguments are of
type System.String, the method concatenates the values. For example,
create two strings:

str1 = String('hello');
str2 = String('world');

When you type:

String.Concat(stri,str2)

Handling .NET Data in MATLAB® Software

MATLAB verifies the method Concat exists and looks for a signature with
two input arguments. There are two signatures:

Static System.String RetVal Concat(System.Object argo,
System.Object argtl)

Static System.String RetVal Concat(System.String stro,
System.String stri1)

Since str1 and str2 are of class System.String, MATLAB chooses the
second signature and displays:

ans =
helloworld

If the arguments are of type System.0Object, the method displays the string
representations of the values. For example, create two System.DateTime
objects:

objDate = DateTime.Today;
myDate = System.DateTime(objDate.Year,3,1,11,32,5);

When you type:

String.Concat(objDate,myDate)

MATLAB chooses the following signature, since System.DateTime objects are
derived from the System.0Object class:

Static System.String RetVal Concat(System.Object argo,
System.Object argl)

This Concat method first applies the ToString method to the objects, then
concatenates the strings. MATLAB displays information like:

ans =

12/23/2008 12:00:00 AM3/1/2008 11:32:05 AM

Passing Arrays

For a method with an input argument of a one-dimensional .NET array,
you can pass either a MATLAB array or an array created using the

8-41

8 MATLAB® Interface to .NET Framework

8-42

NET.createArray function. For example, suppose a method has the following
signature:

public regularMethod2(Int32[] int32ArrArg)

After creating an object obj, you can pass a MATLAB array, as shown in the
following pseudocode:

obj.regularMethod2(int32([2,3]))

For a method with an input argument of a multidimensional .NET array,
you must pass a .NET array. For example, suppose another method has the
following signature:

public regularMethod3(Int32[,] int32TwoDimArg)

Create a .NET array, as shown in the following pseudocode:

netArr = NET.createArray('System.Int32', 2, 2);
obj.regularMethod3(netArr)

For more information, see “Using Arrays with .NET Applications” on page
8-45.

Example — Passing Arrays
Create a string array strArr and populate it:

strArr = NET.createArray('System.String', 3);

space = ;
strArr.Set (0, 'hello');
strArr.Set(1,space);

strArr.Set(2, 'world');

Since strArr is of class System.String[], when you type:
String.Concat(strArr)

MATLAB chooses the following signature, shown in the
methodsview('System.String') window:

Static System.String RetVal Concat(System.String[] values)

Handling .NET Data in MATLAB® Software

and displays:
ans =

hello world

Handling Data Returned from a .NET Object

The following table shows how MATLAB converts data from a .NET object into
MATLAB variables. These are the values displayed in a method signature.

C# .NET Type MATLAB Type
System.Int16 int16 scalar
System.UInt16 uint16 scalar
System.Int32 int32 scalar
System.UInt32 uint32 scalar
System.Int64 int64 scalar
System.UInt64 uint64 scalar
System.Single single scalar
System.Double double scalar
System.Boolean logical scalar
System.Byte uint8 scalar
System.Enum enum
S